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Preface

This book is about how to think using category theory. What does thismean? Category
theory is a favorite tool of ours for structuring our thoughts, whether they be about
pure math, science, programming, engineering, or society. It’s a formal, rigorous
toolkit designed to emphasise notions of relationship, composition, and connection.
It’s amathematical tool, and so is about abstraction, stripping away details and noticing
patterns; one power it gains from this is that it is very concise. It’s great for compressing
thoughts, and communicating them in short phrases that can be reliably decoded.

The flip side of this is that it can feel very unfamiliar at first – a strange, new mode
of thought – and also that it often needs to be complemented by more concrete tools to
fully realise its practicality. One also needs to practice a certain art, or taste, in knowing
when an abstraction is useful for structuring thought, and when it should be broken,
or approximated. Programmers know this well, of course: a programming language
never fullymeets its specification; there are always implementation details that the best
must be familiar with.

In this book, we’ve chosen programming, in particular functional programming, as
the vehicle through which we’ll learn how to think using category theory. This choice
is not arbitrary: category theory is older than digital computing itself, and has heavily
influenced the design of modern functional programming languages such as Haskell.
As we’ll see, it’s also influenced best practice for how to structure code using these
languages.

Thinking is not just an abstract matter; the best thought has practical consequences.
In order to teach you how to think using category theory, we believe that it’s important
to give a mechanism for implementation and feedback on how category theory is
affecting your thought. So in this book, we’ll complement the abstraction of category
theory – lessons on precise definitions of important mathematical structures – with
an introduction to programming in Haskell, and lessons on how category theoretic
abstractions are approximated to perform practical programming tasks.

That said, this book is not intended to be a book about Haskell, and there are many
other programming languages that you could use as a world in which to try out these
categorical ideas. In fact, we hope you do! Thinking categorically is about using a set

vii
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of design patterns that emphasise composition, universal constructions, and algebraic
structure. Used judiciously, we believe this style of thought can improve the clarity
and correctness of code in any language, including those currently popular, and those
that will be developed in the years to come.

Category theory is a vast toolbox, that is still under active construction. A vibrant
community of mathematicians and computer scientists is working hard to find new
perspectives, structures, and definitions that lead to compact, insightful ways to reason
about the world. We won’t teach all of it. In fact, we’ll teach a very small core, some
central ideas all over fifty years old.

The first we’ll teach is the namesake: categories. Programming is about composi-
tion: it’s about taking programs, some perhaps just single functions, and making them
work in sync to construct a larger, usually more expressive, program. We call this way
of making them work in sync composition. A category is a world in which things may
be composed. In programming these things are called, well, programs, but in category
theory we use the more abstract word morphism. Morphisms are often thought of
as processes or relationships. Processes have an input and an output; similarly, rela-
tionships form between objects. Morphisms are similar: categories also have objects,
and morphisms have an input object, called a domain, and an output object, called a
codomain.

Since programming is about composition, and categories model the essence of com-
position, one interesting game to play is to think of – we’ll say model – a programming
language as a category. In this model, morphisms correspond to programs. What do
the domain and codomain of a morphism correspond to? The objects of the category
correspond to types, like int or string. In a category, we can only compose amorphism
f with a morphism 1 if the codomain of f is the same as the domain of 1. If we’re
modelling a programming language as a category, this suggests we want to only allow
composition of programs f and 1 if the output type of f is the same as the input type
of 1. A program that consumes an int shouldn’t be able to accept a string! Haskell is
designed with this principle in mind, and checks for this sort of error at compile time,
only allowing construction of programs that are well-typed.

Category theory is about relationships, and as part of this viewpoint, relationships
between categories are very important. The basic sort of relationship is known as a
functor. A functor between categories C and D must give an object of D for every
object of C. These correspond to type constructors (which a bit of additional structure).
Going deeper still, the basic sort of relationship between functors is known as a natural
transformation. These too are useful for thinking about programming: they are used to
model polymorphic functions.

As may be now clear, types play an a fundamental role in thinking about program-
ming from a categorical viewpoint. We’ll next talk about how category theory lends
insight into methods for constructing new types: first algebraic datatypes, and then
recursive datatypes.
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In category theory, this becomes a question of how to construct new objects from
given objects. In category theory we privilege the notion of relationship, and a deep,
beautiful part of theory concerns how to construct new objects just by characterizing
them as having a special place in the web of relationships that is a category. For
example, in Haskell there is the unit type (), and this has the special property that
every other type a has a unique function a→ (). We say that the unit type thus has a
special universal property, and in fact if we didn’t know the unit type existed, we could
recover or construct it by giving this property. More complicated universal properties
exist, and we can construct new types in this way. In fact, we’ll see that it’s nice if our
programming language can be modelled using a special sort of category known as a
cartesian closed category; if so, then our programming language has product types and
function types.

Another way of constructing types is using the (perhaps confusingly named) notion
of algebras and coalgebras for a functor. In particular, specifying a functor lets us talk
about universal constructions known as initial algebras and final coalgebras. These
allow us to construct recursive datatypes, and methods for accessing them. Examples
include lists and trees.

Functional programming is very neat and easy to reason about. It’s lovely to be
able to talk simply about the program square : int → int, for example, that takes
an integer, and returns its square. But what happens if we also want this program
to wait for an input integer, or print the result, or keep a log, or modify some state
variable? We call these side effects of the program. Functional programming teaches
that we should be very careful about side effects, as they can happen away from the
type system, and this can make programs less explicit and modular, and more difficult
to reason about. Nonetheless, we can’t be too dogmatic. We do want to print results!
Monads are special functors that each describe a certain sort of side effect, and are a
useful way of being careful about side effects.

Learning programming

Throughout this book you’ll be learning to program in Haskell. One way of learning
a programming language is to start with formal syntax and semantics (although very
few programming languages have formal semantics). This is very different from how
most people learn languages, be it natural or computer languages. A child learns the
meaning of words and sentences not by analyzing their structure and looking up the
definitions in Wikipedia. In fact, a child’s understanding of language is very similar to
how we work in category theory. We derive the meaning of objects from the network
of interactions with other objects. This is easy in mathematics, where we can say that
an object is defined by the totality of its interactions with possibly infinite set of other
objects (we’ll see that when we talk about the Yoneda lemma). In real life we don’t
have the time to explore the infinity, so we can only approximate this process. We do
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this by living on credit.
This is how we are going to learn Haskell. We’ll be using things, from day one,

without fully understanding their meaning, thus constantly incurring a conceptual
debt. Some of this debt will be paid later. Some of it will stay with us forever. The
alternative would be to first learn about cartesian closed categories and domain theory,
formally define simply typed lambda calculus, build its categorical model, and only
then wave our hands a bit and claim that at its core Haskell approximates this model.

We emphasize that this book isnot intended to be a complete introduction toHaskell.
While wewill end up introducing all that is essential for learning to express categorical
ideas in Haskell, there many beautiful features of the language that we will not touch
upon, such as lazy compilation or list comprehensions. For the reader interested
in learning Haskell itself, there are many good resources out there; see Hutton for
example.

Installing Haskell

Start by downloading and installing the Haskell Platform on your computer. (On the
Mac or Linux, you’ll have to close and reopen the terminal after installation, to initialize
the environment.) To start an interactive session from the command line, type ghci
(GHC stands for the Glasgow Haskell Compiler or, more affectionately, the Glorious
Haskell Compiler; and ’i’ stands for interactive). You can start by evaluating simple
expressions at the prompt, e.g.:

$ ghci

GHCi, version 8.6.5: http://www.haskell.org/ghc/ :? for help

Prelude> 2 * (3 + 4)

14

Prelude> 1/2

0.5

Prelude> 2^64

18446744073709551616

Prelude> cos pi

-1.0

Prelude> mod 8 3

2

Prelude> :q

Leaving GHCi.

Prelude is the name of the standard Haskell library, which is automatically included
in every Haskell program and in every ghci session.

As you can see, besides basic arithmetic operations, you have access to some stan-
dard functions. Notice that a function call does not require the the arguments to be
parenthesized, even for two-argument functions like mod (division modulo). This is

https://www.haskell.org/platform/
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something you will have to get used to, but it will make a lot of sense later, when we
talk about partial application and currying (that’s the kind of conceptual debt we were
talking about).

To exit the command loop, type :q
The interactive environment is great for trying things out, but real programs have

to be compiled from files. We’ll be mostly workingwith single-file programs. Use your
favorite editor to create and edit Haskell source files, which are files with the extension
.hs. To begin with, create a file main.hs and put this line of code in it:

main = putStrLn "Hello Haskell!"

Compile this file using the command:

ghc main

and then run the resulting executable. The details depend on the operating system.
For instance, you might have to invoke the program by typing ./main at the command
prompt:

$ ./main

Hello Haskell!

If you name your file something else, it will be treated as a separatemodule, andwill
have to include a module declaration at the top. For instance, a file named hello.hs
will have to start with:

module Hello where

main = putStrLn "Hello Haskell!"

(Module names must start with upper case.)

Haskell points

Throughout the book, elements of Haskell will be interspersed with concepts from
category theory, so it makes sense to periodically summarize what we have learned in
a more organized way. For instance, we have just learned that you can do arithmetic
in Haskell.

Operators You have at your disposal the usual operators +, -, *, and /, as well as the
power operator ^. You can apply them to integers and floating-point numbers (except
for the power, which only allows integer exponents).

Unaryminus There is a little gotchawith the unaryminus: when youwrite a negative
literal, like -8, it is treated like the application of the function negate to a literal 8. This
is why you sometimes have to parenthesize it, as in:
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mod (-8) 3

or

2 * (-3)

Without parentheses, theHaskell compilerwill issue one of its infamously cryptic error
messages.

Functions Here are some useful functions: abs, floor, ceiling, round; there is
integral division div and mod satisfying the equality:

(div x y) * y + (mod x y) == x

We have square root , sqrt, the usual trigonometric functions, and the constant pi,
natural exponential exp and logarithm log.

Let syntax When using the interactive environment, ghci, variables are defined using
the let syntax, e.g.:

let x = sin (pi / 4)

let llama = cos (pi / 4)

x^2 + llama^2

Expressions are immediately evaluated and the results are printed (if they are print-
able). Variable names must start with a lowercase letter. Conveniently, following
mathematical usage, variable names may contain apostrophes, as in

let x' = 2 * x

Multi-line modes in GHCi To input multiple lines of Haskell into the interactive
environment at once, wrap the code in :{ and :}, e.g.:

:{

let abs x | x >= 0 = x

| otherwise = -x

:}

Modules When working source files, the module definition has to be included at the
top (except if the file is called main.hs, in which case the module statement can be
omitted). For example, if the file is called test.hs, it must start with something like:

module Test where

The module name Test can be replaced with anything that starts an uppercase letter,
and may contain periods, as in Data.List.

If you want to compile and execute a Haskell file, it must contain the definition of
main.
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Input/Output In general, input and output are performed in main. Unlike in imper-
ative languages, I/O is special in Haskell and it requires the use of the IOmonad. We
will eventually talk about monads, but for now, we’ll just follows a few simple rules. To
begin with, we can print any string in main using putStrLn. We can also print things
that can be displayed, like numbers or lists, using print. For instance:

main = print (2^31 - 1)

Remember to enclose composite expressions in parentheses when passing them to
print.

If you want to do multiple I/O operations in main, you have to put them in the do
block:

main = do

putStrLn "This is a prime number"

print (2^31 - 1)

Statements in a block must be all indented by the same amount. Haskell is whitespace
sensitive.

Comments To make your code more readable to humans, you might want to include
comments. An end-of-line comment starts with a double hyphen and extends till the
end of line

id :: a -> a -- identity function

A multi-line comment starts with {- (curly brace, dash) and ends with -}.

Language pragmas Language pragmas have to be listed at the very top of a source file
(before imports). Formally, these are just comments, but they are used by the compiler
to influence the parsing.

{-# language ExplicitForAll #-}

Alternatively, pragmas can be set in GHCi using the command :set

Prelude> :set -XTypeApplications

Prelude> :t id

id :: a -> a

Prelude> :t id @Int

id @Int :: Int -> Int

Further resources Here are some useful online resources:
• https://hoogle.haskell.org. Hoogle lets you look upHaskell function definitions,

either by name or by type signature.
• https://www.cs.dartmouth.edu/cbk/classes/8/handouts/CheatSheet.pdf,Haskell

cheat sheet

https://hoogle.haskell.org/
https://www.cs.dartmouth.edu/~cbk/classes/8/handouts/CheatSheet.pdf
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Chapter 1

Categories, Types, and Functions

1.1 Programming: the art of composition

What is programming? In some sense, programming is just about giving instructions
to a computer, a strange, very literal beast with whom communication takes some
art. But this alone does not explain why more and more people are programming,
and why so many (perhaps including you, dear reader) are interested in learning to
program better. Programming is about using the immense power of a computer to
solve problems. Programming, and computers, allow us to solve big problems, such
as forecasting the weather, controlling a lunar landing, or instantaneously sending a
photo to your mom on the other side of the planet.

How do we write programs to solve these big problems? We decompose the big
problems into smaller ones. And if they are still too big, we decompose them again,
and again, until we are left writing the very simple functions that come at the base of a
programming language, such as concatenating two lists (or even modifying a register).
Then, by solving these small problems and composing the solutions, we arrive at a
solution to the larger problem.

To take a very simple example, suppose we wanted to take a sentence, and count
how many words it contains. This capability is usually not provided to us in the
base library of a programming language, such as Haskell’s Prelude. Luckily, we can
perform the task by composition.

Our first ingredient will be the function words, which takes a sentence (encoded as
a string) and turns it into a comma-separated list of words. For example, here’s what
happens if we call it on the sentence "Hello world":

Prelude> words "Hello world"

["Hello","world"]

Our second ingredient is the function length, which counts the number of entries
in a list. For example, we might run:
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Prelude> length ["I","like","cats"]

3

Composition in Haskell is denoted by a period “.” between two functions. We can
define new functions by composing existing functions:

Prelude> let countwords = length . words

This produces a solution to our problem.

Prelude> countwords "Yay for composition!"

3

Given that composition is such a fundamental part of programming, and problem
solving in general, it would be nice to have a science devoted to understanding the
essence of composition. In fact, we have one: it’s known as category theory.

As Bartosz once wrote elsewhere, a category is an embarrassingly simple concept.
A category is a bunch of objects, and some arrows that go between them. We assume
nothing about what these objects or arrows are; all we have are names for them. We
might call our objects very abstract names, like x, y, and z, or more evocative ones, like
42, True, or String. Our arrows have a source and a target. For example, we might
have an arrow called f , with source x and target y. This could be depicted as an arrow:

x y
f

Or as a box called f , that accepts an ‘x’ and outputs a ‘y’:

fx y

What is important is that in a category we can compose. Given an arrow f : x → y and
an arrow 1 : y → z, we may compose them to get an arrow with source x and target z.
We denote this arrow 1 ◦ f : x → z. We might can also draw it as piping together two
boxes:

f 1
x y z

This should remind you of our word counting example above, stripped down to its
bare essence.

A category is a network of relationships, or slightly more precisely, a bunch of
objects, some arrows that go between them, and a formula for composing arrows.
A programming language generally has a bunch of types and some programs that
go between them (i.e. take input of one type, and turn it into output of another).
The guiding principle of this book, is that if you think of your (ideal) programming
language like a category, good programs will result.

So let’s go forward, and learn about categories. To begin, it will be helpful to
mention a few things about another fundamental notion: sets.
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1.2 Two fundamental ideas: sets and functions

1.2.1 What is a set?

A set, in this book, is simply a bag of dots.

0• 1• 2•X �
a• foo• ♥• 7•Y � Z �

This set X has three elements, the dots. We could write it in text form as X � {0, 1, 2};
when we write 1 ∈ X it means “1 is an element of X”. The set Z has no elements;
it’s called the empty set. The number of elements of a set X is called its cardinality, is
denoted by |X |. Note that cardinalities of infinite sets may involve very large numbers
indeed.

Example 1.1. Here are some sets you’ll see repeated throughout the book.

Name Symbol Elements between braces
The natural numbers N {0, 1, 2, 3, . . . , 422048+17, . . .}
The nth ordinal n {1, . . . , n}
The empty set � {}
The integers Z {. . . ,−59,−58, . . . ,−1, 0, 1, 2, . . .}
The booleans B {true, false}

Exercise 1.2.
1. What is the cardinality |B| of the booleans?
2. What is the cardinality |n | of the nth ordinal?
3. Write 1 explicitly as elements between braces.
4. Is there a difference between 0 and �? ♦

Definition 1.3. Given a set X, a subset of it is another set Y such that every element of Y
is an element of X. We write Y ⊆ X, a kind of curved version of a less-than-or-equal-to
symbol.

Exercise 1.4.
1. Suppose that a set X has finitely many elements and Y is a subset. Is it true that

the cardinality of Y is necessarily less-than-or-equal-to the cardinality of X? That
is, does Y ⊆ X imply |Y | ≤ |X |?

2. Suppose now that Y and X are arbitrary sets, but that |Y | ≤ |X |. Does this imply
Y ⊆ X? If so, explain why; if not, give a counterexample. ♦
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Definition 1.5. Given a set X and a set Y, their (cartesian) product is the set X × Y that
has pairs (x , y) as elements, where x ∈ X and y ∈ Y.

One should picture the product X × Y as a grid of dots. Here is a picture of 6 × 4,
and how it relates to 6 and 4:

(1,1)•1•

(1,2)•2•

(1,3)•3•

(1,4)•4•

1•

(2,1)•

(2,2)•

(2,3)•

(2,4)•

2•

(3,1)•

(3,2)•

(3,3)•

(3,4)•

3•

(4,1)•

(4,2)•

(4,3)•

(4,4)•

4•

(5,1)•

(5,2)•

(5,3)•

(5,4)•

5•

(6,1)•

(6,2)•

(6,3)•

(6,4)•

6•

The name product is nice because the cardinality of the product is the product of the
cardinalities: |X × Y | � |X | × |Y |. For example |6 × 4| � 24, the product of 6 and 4.

Exercise 1.6. We said that the cardinality of the product X × Y is the product of |X |
and |Y |. Does that work even when X is empty? Explain why or why not. ♦

One can take the product of any two sets, even infinite sets, e.g. N × Z or N × 4.

Exercise 1.7.
1. Name three elements of N × 4.
2. Name three subsets of N × 4. ♦

1.2.2 Functions

A mathematical function can be thought of as a machine that turns input values into
output values. It’s total and deterministic, meaning that every input results in at least
one and at most one—i.e. exactly one—output. If you put in 5 today, you’ll get a unique
answer, and you’ll get exactly the same answer if you put in 5 tomorrow.

Definition 1.8. Let X and Y be sets. A (mathematical) function f from X to Y, denoted
f : X → Y, is a subset of f ⊆ X × Y with the following properties.
(a) For any x ∈ X there is at least one y ∈ Y for which (x , y) ∈ f .
(b) For any x ∈ X there is at most one y ∈ Y for which (x , y) ∈ f .

If f satisfies the first property we say it is total, and if it satisfies the second property
we say it is deterministic. If f is a function (satisfying both), then we write f (x) or f x
to denote the unique y such that (x , y) ∈ f .
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We call X the domain of f , and Y the codomain.

Remark 1.9. The word function is also used for certain terms in the Haskell program-
ming language. We’ll talk about both mathematical functions and Haskell functions,
and usually refer to both simply as ‘functions’. The context should make it clear which
one we mean.

This is a rather abstract definition; perhaps some examples will help. One way of
denoting a function f : X → Y is by drawing “maps-to” arrows x 7→ y when y � f (x).
Since f is total and deterministic, every x ∈ X gets exactly one arrow emanating from
it, but no such rule for y’s.

Example 1.10. The successor function s : N → N consists of all pairs (n , n + 1), where
n ∈ N. In other words, s sends n 7→ n + 1. For example s(52) � 53. Here’s a picture:

•0
•1
•2
•3
•4
...

N �

•0
•1
•2
•3
•4
...

� N

Every natural number n input is sent to exactly one output, namely s(n) � n + 1.

Example 1.11. Here’s a picture of the function f : 4→ 4 where

f � {(1, 2), (2, 1), (3, 3), (4, 3)} :

•1
•2
•3
•4

•1
•2
•3
•4

Note that in the domain every element as a unique arrow emanating from it, while in
the codomain 3 receives two arrows, while 4 doesn’t receive any.
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Example 1.12. The function isEven : N→ B sends a number n to true if n is even, and
n to false if n is odd. We might write this using case notation, as follows:

isEven(n) �
{
true n is even;

false n is odd.

Exercise 1.13.
1. Suppose someone says “n 7→ n−1 is also a function N→ N. Are they right?
2. Suppose someone says “n 7→ 42 is also a function N→ N. Are they right?
3. Draw arrows from elements in 3 to elements in 4 in a way that’s not total.
4. Draw arrows from elements in 3 to elements in 4 in a way that’s not deterministic.

♦

Exercise 1.14.
1. How many functions 3→ 2 are there? Write them all.
2. How many functions 1→ 7 are there? Write them all.
3. How many functions 3→ 3 are there?
4. How many functions 0→ 7 are there?
5. How many functions 0→ 0 are there?
6. How many functions 7→ 0 are there? ♦

In general, for any a , b ∈ N there are ba functions a → b. You can check your answers
above using this formula. One case which may be confusing is when a � b � 0. In
this case, some mathematicians, such as a calculus teacher, might prefer to say “the
expression 00 is undefined”, but we’re not in calculus class. It is true that if a and b
are real numbers, there is no smooth way to define 00, but for natural numbers, the
formula “count the number of functions a → b” works so well, that here we define
00 � 1.

1.2.3 Some intuitions about functions

A lot of intuitions about functions translate into category theory. A function is allowed
to collapse multiple elements from the domain into one element of the codomain:

•x
′

•x

•
y
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On the other hand, a function is forbidden from splitting a domain element into
multiple codomain elements.

•
y′

•
y

•x

Hey! Not a function!

A second source of asymmetry: functions are defined for all elements in the domain,
but not every element of the codomain needs to be hit. For example:

•
y′

•
y

•x

The subset of elements in the codomain that are mapped to by the source is called the
image of a function:

im f � {y ∈ Y | ∃x ∈ X. f (x) � y}

The symbol ∃ is shorthand for there exists, and so we read this statement: “The image
of f is the set of y’s in Y such that there exists an x in X where f (x) � y.” One might
picture this as follows:

im f

domain codomain

The directionality of functions is reflected in the notation we are using: we repre-
sent functions as arrows going from source to target, from domain to codomain. This
directionality makes them interesting.

You may think of a function that maps many things to one as discarding some
information. The function N→ B that takes a natural number and returns true if it’s
even and false otherwise doesn’t care about the precise value of a number, it only
cares about it being even or odd. It abstracts some important piece of information by
discarding the details it considers inessential.
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You may think of a function that doesn’t cover the whole codomain as modeling
its domain in a larger environment. It’s creating a model of its domain in a larger
context, especially when it additionally collapses it by discarding some details. A
helpful intuition is to think of the domain as defining a shape that is projected into a
bigger set and forms a pattern there. We’ll see later that, compared to category theory,
set theory offers a very limited choice of bare-bones shapes.

Abstraction andmodeling are the twomajor tools that help us understand theworld.

Example 1.15. A singleton set—that is, a set with one element, such as 1 or {∗}—is the
simplest non-trivial shape. A function from a singleton picks a single element from
the target set. There are as many distinct functions from a singleton to a non-empty
set as there are elements in that set. In fact we may identify elements of a set with
functions from the singleton set. We’ll see this idea used in category theory to define
global elements.

Example 1.16. A two-element set can be used to pick pairs of elements in the target set.
It embodies the idea of a pair. For example, functions from 2→ X are much the same
as pairs (a , b) ∈ X × X.

•b

•a
...

...

...

•1

•0

As an example, consider a function from a two-element set to a set of musical notes.
You may say that it embodies the idea of a musical interval.

Exercise 1.17. Let N be the set of musical notes, or perhaps the keys on a standard
piano. Person A says “amusical interval is a subset I ⊆ N such that I has two elements.
Person B says “no, a musical interval is a function i : 2 → N , from a two element set
to N . They prepare to fight bitterly, but a peacemaker comes by and says “you’re both
saying the same thing!” Are they? ♦

Exercise 1.18. How would you describe functions from an empty set to another set A.
What do they model? (This is more of a Zen meditation than an exercise. There are no
right or wrong answers.) ♦

Remark 1.19. You might have noticed that our definition of a set—“a bag of dots”—is
rather informal, and we’ve focussed on introducing sets by discussing what you can
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do with them, like form pairs and construct functions, rather than formally saying
“what they really are”. This is not to avoid the topic, but to establish a starting
point. The theory of sets is a rich subject, rich enough to be considered a foundation
for mathematics, but it’s also rather technical, and the details will distract us from
the main, categorical story here. Instead, we’ve just chosen to begin with a working
knowledge of sets and functions, and basic constructions like the cartesian product,
because these are necessary to define categories.

There is another incentive to studying set theory, that is that sets themselves form a
category, which is a very fertile source of examples and intuitions. On the one hand,
we wouldn’t like you to think of morphisms in an arbitrary category as being some
kind of functions. On the other hand, we can define and deeply understand many
properties of sets and functions that can be generalized to categories. In fact, we can
think of sets as primordial, ‘discrete’ categories.

What an empty set is everybody knows, and there’s nothing wrong in imagining
that an initial object in a category is “sort of” like an empty set. At the very least,
it might help in quickly rejecting some wrong ideas that we might form about initial
objects. We can quickly test them on empty sets. Programmers know a lot about
testing, so this idea that the category of sets is a great testing platform should sound
really attractive.

1.3 Categories

In this section we’ll define categories, and give a library of useful examples. We begin
by motivating the definition by discussing the ur-example: the category of sets and
functions.

1.3.1 Motivation: the category of sets

The identity function on a set X is the function idX : X → X given by idX(x) � x. Given
an input x, it outputs that same x. It does nothing. This might seem like a very
boring thing, but it’s like 0: adding it does nothing, but that makes it quite central. For
example, 0 is what defines the relationship between 6 and -6: they add to 0.

Just like 0 as a number really becomes useful when you know how to combine
numbers using +, the identity function really becomes useful when you know how to
combine functions using “composition".

Definition 1.20. Let f : X → Y and 1 : Y → Z be functions. Then their composite,
denoted either 1 ◦ f or f # 1, is the function X → Z sending each x ∈ X to 1( f (x)) ∈ Z.
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Example 1.21. A great way to visualize function composition is by path following.

•1
•2
•3
•4

•1
•2
•3
•4
•5

•1
•2
•3

X Y Z
f 1

Following the paths from X to Z, we see that 1( f (3)) � 1 and 1( f (2)) � 2.

Exercise 1.22. Recall the successor function s : N → N from Example 1.10. What is
(s ◦ s)(4)? How about (s ◦ s)(23)? Give a general description of s ◦ s. ♦

Remark 1.23. There are two competing notational conventions for composing functions
and, as we’ll see later, for composing morphisms in any category. Since we usually

draw arrows in the left-to-right order, as in f : X → Y, or X
f
−→ Y, it’s natural to write

composition in diagrammatic order, writing f # 1 for X
f
−→ Y

1

−→ Z. On the other hand,
we’ve already discussed the standard ‘function application’ notation f x or f (x). If we
were to apply f to x and then 1 to the result, then we’d write 1( f x) or 1( f (x)). For
this reason, it’s natural to write composition in application order, writing 1 ◦ f so that
(1 ◦ f )x � 1( f x). Since application order is the one preferred in Haskell, we’ll usually
use that. We pronounce 1 ◦ f as 1 after f .

Example 1.24. Suppose that f : X → Y is a function. Then if we compose it with either
(or both!) of the identity functions, idX : X → X or idY : Y → Y, the result is again f .

•1
•2
•3
•4

•1
•2
•3
•4

•1
•2
•3
•4
•5

•1
•2
•3
•4
•5

X X Y Y
fidX idY

To make this precise, we need to say what it means for two functions to be equal.
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Definition 1.25. Two functions f : X → Y and 1 : X → Y are equal if f (x) � 1(x) for
every x ∈ X.

The unit laws then say that for any f : X → Y, we have f ◦ idX � f and idY ◦ f � f .
This gives the slogan:

Composing with the identity doesn’t do anything.

Another important property of function composition is that you can compose mul-
tiple functions at once, not just two. That is, if you have a string of n functions

X0
f1−→ X1

f2−→ · · ·
fn−→ Xn , you can collapse it into one function by composing two-at-a-

time in many different ways. This is denoted mathematically using parentheses. For

example we can compose this string of functions V
h−→W

1

−→ X
f
−→ Y

e−→ Z as any of the
five ways represented in the pentagon below:

•
(e ◦ f ) ◦ (1 ◦ h)

•
e ◦ ( f ◦ (1 ◦ h))

•
e ◦ (( f ◦ 1) ◦ h)

•
(e ◦ ( f ◦ 1)) ◦ h

•
((e ◦ f ) ◦ 1) ◦ h

(1.26)

It turns out that all these different ways to collapse four functions into a single function
give the same answer. You could write it simply e ◦ f ◦ 1 ◦ h and forget the parentheses
all together.

A betterword than “collapse” is associate: we’re associating the functions in different
ways. The associative law says that ( f ◦ 1) ◦ h � f ◦ (1 ◦ h). The slogan is:

When composing functions, how you parenthesize doesn’t matter: you’ll get the same answer
no matter what.

Exercise 1.27. Let a : 4 → N send a number n ∈ 4 to 5 × n, and recall the successor
function s : N→ N of Example 1.10, and the function isEven : N→ B of Example 1.12.

Show that (isEven ◦ s) ◦ a � isEven ◦ (s ◦ a). ♦

Exercise 1.28. Consider the pentagon (sometimes called the associahedron) in Eq. (1.26).
1. Show that each of the five dotted edges corresponds to an instance of the asso-

ciative law in action.
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2. Are there any other places where we could do an instance of the associative law
that isn’t drawn as a dotted edge?

♦

To summarise, we have discussed sets, functions between sets, and composition of
functions. Composition of functions obeys three laws: the left and right unit laws, and
the associative law. This is all the data needed for a category.

1.3.2 The definition of a category

Here’s a slogan:

A category is a network of composable relationships.

The prototypical category is Set, the category of sets.1 The objects of study in Set
are, well, sets. The relationships of study in Set are the functions. These form a vast
network of arrows pointing from one set to another.

•
0

•
2

•
1 (and if you toss in 3, you’ll need to add

30+31+32+33+23+13+03 � 49 more arrows
with it! See https://oeis.org/A231344) (1.29)

But Set not just any old network of relationships: it’s organized in the sense that
we know how to compose the functions. Just like the mother of my mother is my
grandmother, if a function relates X and Y, and another function relates Y and Z,
we can compose them to get a relationship between X and Z. This imposes a tight
constraint: if pretty much any function was somehow left out of the network in Set, we
would find that certain functions wouldn’t have a composite in the network.

Let’s see the precise definition.

Definition 1.30. A category C consists of four constituents:
(i) a set Ob(C), elements of which are called objects of C;
(ii) for every pair of objects c , d ∈ Ob(C) a set C(c , d), elements of which are called

morphisms from c to d and often denoted f : c → d;
(iii) for every object c, a specified morphism idc ∈ C(c , c) called the identity morphism

for c; and

1More properly, Set is the category of small sets, meaning sets all of whose elements come from some
huge pre-chosen ‘universe’ U. The reason we have to qualify this is that paradoxes result when you try
to make sense of the idea of ‘the set of all sets’. We won’t get into the set theoretical aspects regarding the
idea of universes, but instead just state that the objects of Set are sets up to a certain size (which may be
very, very large indeed, just not paradoxically large).

In the end, to learn how to think categorically, you don’t need to worry about all these “size issues”;
just focus on the category theory for now. If you do later want to get deep into the technical set-theoretic
issues, see [**].

https://oeis.org/A231344
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(iv) for every three objects b , c , d and morphisms f : b → c and 1 : c → d, a specified
morphism (1 ◦ f ) : b → d called the composite of 1 after f (sometimes denoted
f # 1).

These constituents are subject to three constraints:
Left unital: for any f : c → d, the equation idc ◦ f � f holds;
Right unital: for any f : c → d, the equation f ◦ idd � f holds;
Associative: for any f1 : c1 → c2, f2 : c2 → c3, and f3 : c3 → c4, the following

equation holds
( f3 ◦ f2) ◦ f1 � f3 ◦ ( f2 ◦ f1).

If f : c → d is a morphism, we again call c the domain and d the codomain of f .

So that’s the key definition of this book: a category is some objects, somemorphisms
that relate them, and a rule for composing these morphisms!

Note thatwe can only composemorphisms f and 1when the codomain of f is equal
to the domain of 1. If we think again about the picture Eq. (1.29), composition allows
us to take a sequence of arrows head-to-tail in the picture, say from 0 to 2 to 1, and
compose or ‘summarise’ it as a single arrow from 0 to 1. Moreover, associativity says
we can take any sequence, following as many arrows as we like from head-to-tail, and
uniquely collapse it down to a single arrow capturing thewhole sequence. The identity
morphism says that for any object, say 0, we can simply choose an empty sequence, ‘do
nothing’, and that still can be represented as a morphism in the category: the identity
morphism.

You should get familiar with the notation C(a , b) for the set of morphisms between
two objects. It contains the name of the category, here C, followed by the names of two
objects between parentheses. For example, Set(A, B) is the set of functions from A to
B.

Example 1.31 (The category of sets). The category of sets, denoted Set has all the setsa

as its objects. Given two sets A, B ∈ Ob(Set), the set Set(A, B) has as its elements all
functions f : A → B. (There’s sets everywhere: objects are sets, and for every two
objects we have another set Set(A, B).) The identity morphism idA : A → A is just the
identity function, and composition is given by composition of functions. We saw that
this data obeys the unit and associative laws in Section 1.3.1.

aAgain, up to some large size.

Exercise 1.32. Let’s return to a remark wemade earlier about the category Set. Is there
any single morphism you can take out of it, such that—without taking away any more
morphisms—the remaining collection of objects andmorphisms is still a category? ♦
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1.3.3 Examples of categories

Learning many different examples of categories is useful for having a collection of
tools to deepen your understanding of the categorical concepts we’ll encounter in this
book. It will help separate out the essential features of the concepts from those that
are incidental to one or two examples. Think of them like a testing suite for your
categorical mental models!

Even though the notion of a category was inspired by examples like Set, there are
tons of categories that don’t really resemble it at all! Some of the most important
categories are the little ones. It’s like how the numbers 0, 1, and 2 are more often used
than the number 99.

Example 1.33. There is a category 1 with one object, which we call 1, and with only one
morphism, which we call id1.

1•

id1

We call the unique morphism id1 as it must be the identity morphism on 1; there’s no
other morphism to choose. What is the composition rule? Well, the only morphism in
the category is id1 : 1→ 1, so we only need to say what the composite id1 ◦ id1 is. We
define it to be id1; again, since there are no other morphisms, it’s the only choice we
can make!

Exercise 1.34. Consider Example 1.33 in light of the formal definition of a category,
Definition 1.30. What is the set Ob(1)? What is the set 1(1, 1)? Why does 1 satisfy the
unit and associative laws? ♦

Example 1.35 (Discrete categories). There is also a category with two objects 1 and 2
and two morphisms id1 : 1→ 1 and id2 : 2→ 2.

Disc(2) � 1• 2•

id1 id2

In fact, for every set S, there’s an associated category Disc(S), called the discrete category
on S. The objects of Disc(S) are the elements of S, i.e. Ob(Disc(S)) � S, and the
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morphisms are just the identities:

Disc(S)(s , s′) �
{
{ids} if s � s′

� if s , s′

In particular, there is the empty category, which has no objects at all, given by 0 � Disc(0).

So far we haven’t gained any advantage over sets. But in a category we not only
have objects; we may have arrows between them. This is when interesting structures
arise. For instance, we can add a morphism ar : 1→ 2 to the two-object category.

Example 1.36. This tiny category is sometimes called the walking arrow category 2.

2 B 1• 2•id1
f

id2

Exercise 1.37. Define a composition rule and identity morphisms for 2 such that the
resulting data satisfies the three the laws of a category. Could you havemade any other
choice? ♦

Since an identity morphism ida automatically has to be there for each object a,
and since a composite morphism 1 ◦ f automatically has to be there for every pair of
morphisms f : a → b and 1 : b → c, we often leave these out of our pictures.

Example 1.38 (Not drawing all morphisms). In the picture • → • → • , only two
arrows are drawn, but there are implicitly six morphisms: three identities, the two
drawn arrows, and their composite.

So with this new convention, we redraw the walking arrow category from Exam-
ple 1.36 as

2 B 1• 2•f

Example 1.39 (Ordinal categories). There is a progression of ordinal categories that look
like this:

1•

1
1• 2•f12

2
1• 2• 3•f12 f23

3

· · ·

0
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Exercise 1.40. Being sure to take into account Example 1.38,
1. How many morphisms are there in 3?
2. How many morphisms are there in n?
3. Are 0 and Disc(0) the same?
4. Are 1 and Disc(1) the same? ♦

Example 1.41 (The walking isomorphism). In the following category, which we will call
I, there are two objects and four morphisms:

1• 2•
f

1

1 ◦ f � id1
f ◦ 1 � id2

below ◦ right id1 id2 f 1

id1 id1 Hey! Hey! 1

id2 Hey! id2 f Hey!
f f Hey! Hey! id2

1 Hey! 1 id1 Hey!

To the left we see the drawing, with equations that tell us how morphisms compose.
To the right, we see a table of all the composites in the category. Whenever two
morphisms are not composable—the output object of one doesn’t match the input type
of the other—the table yells at you. In Haskell, the error message is something like
“couldn’t match types".

Exercise 1.42. Suppose that someone tells you that their category C has two objects c , d
and two non-identity morphisms, f : c → d and 1 : d → c, but no other morphisms.
Does f have to be the inverse of 1, i.e. is it forced by the category axioms that 1 ◦ f � idc

and f ◦ 1 � idd? ♦

Free categories

One simple way to construct a category is to freely construct one from a graph.

Definition 1.43. A graph consists of two sets V, E and two functions src : E → V and
tgt : E → V . The elements of V are called vertices, the elements of E are called edges,
and for each edge e ∈ E, the vertex src(e) is called its source and the vertex tgt(e) is
called its target.

One can depict a graph by drawing a dot on for each element v ∈ V and an arrow
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for each element e ∈ E, making the arrow point from the source of e to the target of e:

a• b•

c• d•

1

2

3
4 56

Edge src tgt
1 a b
2 a b
3 b b
4 a c
5 b b
6 c a

Vertex
a
b
c
d

For any graph G as above, there is an associated category, called the free category
on G, denoted Free(G). The objects of Free(G) are the vertices of G. The morphisms
of Free(G) are the paths in G, i.e. the head-to-tail sequences of edges in G. For each
vertex, the trivial path—no edges—counts as a morphism, namely the identity. You
can compose paths (just stick them head-to-tail), and this composition is associative.
We say that this category is the ‘free’ category because composition obeys no equations,
or constraints: every distinct path is a distinct morphism.

Exercise 1.44. Consider the following graph G:

a• b•

c• d•

2

3

4
51

Howmany objects are there in Free(G)? Name them. Howmany morphisms are there
in Free(G)? Name them too. ♦

Exercise 1.45. Is the ordinal category 3 (see Example 1.39) the free category on a graph?
If so, on which graph; if not, why not? ♦

Monoids

When getting to know a new mathematical structure, it’s often helpful to think about
simplifying assumptions that can help give a feel for just one aspect of the structure.
For example, an interesting assumption you can make about a category C is that it has
just one object. It doesn’t quite matter what this object is called, so let’s just call it ∗. In
this case, there is just one homset too: C(∗, ∗). In other words, all morphisms in C are
morphisms ∗ → ∗.

The result is called amonoid. These are incredibly useful constructs in programming
too (for example, we’ll see how to use them to fold over recursive data structures), so
let’s formally introduce the name and some terminology.
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Definition 1.46. A monoid (M, e ,�) consists of
(i) a set M, called the carrier;
(ii) an element e ∈ M, called the unit; and
(iii) a function � : M ×M → M, called the operation.
These are subject to two conditions:
(a) (unitality) for any m ∈ M, we have e �m � m and m � e � m;
(b) (associativity) for any l ,m , n ∈ M, we have (l �m) � n � l � (m � n).

Exercise 1.47. Why is amonoid the same as a categorywith exactly one object? Suppose
I have a categoryCwith a single object ∗, what is the carrier set of the resultingmonoid?
What is the unit and the operation? ♦

Example 1.48. Avery familiar example is (N, 0,+), the additive monoid of natural numbers.
The carrier is N, the unit is 0, and the operation is +. In this monoid, you can “add
numbers in sequence”, e.g. 5 + 6 + 2 + 2.

Exercise 1.49. Remember that wewriteB for the set containing true and false; we call
this set the ‘booleans’. To make a set into the carrier of a monoid, we need to specify
an operation and a unit. Two well-known choices for an operation are ‘AND’ and ‘OR’.

For each of these two operations, what is the unit? ♦

Exercise 1.50. Monoids are everywhere! Look for a monoid in your life, and write
down its carrier, unit, and operation. Why is it unital and associative? ♦

Preorders

Monoids are categories that are tiny in terms of objects—just one! Similarly, we can
discuss categories which are tiny (or thin) in terms of morphisms.

A preorder is a category such that, for every two objects a , b, there is at most one
morphism a → b. That is, there either is or is not a morphism from a to b, but there
are never two morphisms a to b. If there is a morphism a → b, we write a ≤ b; if there
is not a morphism a → b, we don’t.

Like monoids, preorders are important enough to warrant their own terminology,
separate from their existence as thin categories.

Definition 1.51. A preorder (P, ≤) consists of:
(i) a set P; and
(ii) a subset ≤ of P × P, called the order.

Given (p , q) ∈ P × P, we write p ≤ q when the pair is in the subset ≤. These are subject
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to two conditions:
(a) (reflexivity) for any p ∈ P, we have p ≤ p;
(b) (transitivity) for any p , q , r ∈ P such that p ≤ q and q ≤ r, we have p ≤ r.

Example 1.52. If you can think of a collection of objects you would call ordered, then
it’s likely to be a preorder. For example, the natural numbers N, integers Z, and real
numbers R all form preorders with their usual ≤ order.

Example 1.53. There is a preorderPwhose objects are the positive integers Ob(P) � N≥1

and where
P(a , b) B {x ∈ N | x ∗ a � b}

This is a preorder because either P(a , b) is empty (if b is not divisible by a) or contains
exactly one element.

Exercise 1.54. Consider the preorder P of Example 1.53. We know that we can think
of it as a category with at most one morphism between any two objects.

1. What is the identity on 12?
2. Show that if x : a → b and y : b → c are morphisms, then there is a morphism

y ◦ x to serve as their composite.
3. Would it have worked just as well to take P to have all ofN as objects, rather than

just the positive integers? ♦

Building new categories from old

When you have a category, or two or three, you can use them to build other categories!
Here are three common ways we’ll use.

Example 1.55 (Opposite category). For any category C, there is a category Cop defined
by “turning all the arrows around”. That is, the two categories have the same objects,
and all the arrows simply point the other way:

Ob(Cop) B Ob(C) and Cop(a , b) B C(b , a).

The opposite category is so much like the original category that it can be tricky at
first to spot the difference. But the difference is important: category theory is all about
the arrows, so which direction they point is fundamental!

Example 1.56 (Product category). Suppose C and D are categories. We can form a new
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category C ×D as follows:

Ob(C ×D) B Ob(C) ×Ob(D) and (C ×D)
(
(c , d), (c′, d′)

)
B C(c , c′) ×D(d , d′).

For example, the category 2 × 2 looks like this:

(1, 1) (1, 2)

(2, 1) (2, 2)

(id1 , f )

( f ,id1) ( f ,id2)

(id2 , f )

( f , f )

(id2 , f ) ◦ ( f , id1) � ( f , f )
( f , id2) ◦ (id1 , f ) � ( f , f )

Example 1.57 (Full subcategories). Let C be any category, and suppose you want “only
some of the objects, but all the morphisms between them”. That is, you start with
a subset of the objects, say D ⊆ Ob(C), and you want the biggest subcategory of C
containing just those objects; this is called the full subcategory of C spanned by D and we
denote it COb�D . It’s defined by

Ob(COb�D) B D and COb�D(d1 , d2) � C(d1 , d2).

For example, the category of finite sets is the full subcategory of Set spanned by the
finite sets.

Exercise 1.58. Does the picture shown in Eq. (1.29) look like the full subcategory of Set
spanned by {0, 1, 2} ⊆ Ob(Set)? Why or why not? ♦

1.3.4 Thinking in a category: the Yoneda perspective

Acategory is awebof relationships. A cornerstoneof thephilosophyof category theory,
stemming from a central result known as the Yoneda lemma, is that relationships are
all that’s needed: an object is no more, nor less, than how it relates to others.

One first peek at this is through the notion of a generalized element. Let a be an
object in a category C. Given any object c in C, we can ask what a looks like from the
point of view of c. (We choose c for ‘seer’.) The answer to this is encoded by the homset
C(c , a), which is the set of all morphisms from c to a.

Recall from Example 1.15 that elements of a set X are in one-to-one correspondence
with functions 1 → X. Inspired by this, we often abuse our language to say that ‘an
element of X’ is a function x : 1→ X. More precisely, we could say that x is ‘an element
of shape 1’. We then generalize this notion to arrive at the following definition.
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Definition 1.59. Let c be an object in a category C. Given an object a, a generalized
element of a of shape c is a morphism e : c → a.

The reader might object: this is just another word for morphism! Nonetheless, we
will find it useful to speak and think in these terms, and believe this is enough to justify
making such a definition.

This allows us to put slightly more nuance in our mantra that a category is about
relationships. Note that, almost by definition, a set is determined by its (generalized)
elements (of shape 1). Not all categories have an object that can play the all-seeing role
of 1. It is true, however, more democratically: an object in a category is determined by
its generalized elements of all shapes.

A nuance is that, as always, we should take into account the role of morphisms.
Suppose we have a morphism f : a → b. We then may obtain sets of generalized
elements C(c , a) and C(c , b). But more than this, we also obtain a function

f ◦ − : C(c , a) −→ C(c , b);
x 7−→ f ◦ x.

This function describes how f transforms generalized elements of a into generalized
elements of b.

To say more precisely what we mean requires the notion of functor, which we shall
get to in the next section. We will return to the Yoneda viewpoint in the chapters
to come, with a few more tools under our belt. One application of this perspective
accessible so far, however, relates to the notion of sameness.

Isomorphisms: when are two objects the same?

Let’s think about the category of sets for a moment. Suppose we have the set 2 � {0, 1}
and the set B � {apple, pear}. Are they the same set? Of course not! One contains
numbers, and the other (names of) fruits! And yet, they have something in common:
they both have the same number of elements.

How do we express this in categorical terms? In a category, we don’t have the
ability to count the number of elements in an object – indeed, objects need not even
have elements! We’re only allowed to talk of objects, morphisms, identities, and
composition. But this is enough to express a critically (and categorically) important
notion of sameness: isomorphism.

Morphisms in Set are functions, and we can define a function f : 2→ B that sends
0 to apple and 1 to pear. In the reverse direction, we can define a function 1 : B → 2
sending apple to 0 and pear to 1. These two functions have the special property that,
in either order, they compose to the identity: 1 ◦ f � id2, f ◦ 1 � idB.

This means that we can map from 2 to B, and then B back to 2, and vice versa,
without losing any information.
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Definition 1.60. Let a and b be objects in a category C. We say that a morphism
f : a → b is an isomorphism if there exists 1 : b → a such that 1 ◦ f � ida and f ◦ 1 � idb .
We will call 1 the inverse of f , and sometimes use the notation f −1.

If an isomorphism f : a → b exists, we say that the objects a and b are isomorphic.

We will spend a lot of time talking about isomorphisms in the category of sets, so
they have a special name.

Definition 1.61. A bĳection is a function that is an isomorphism in the category Set.
If there is a bĳection between sets X and Y, we say the elements of X and Y are in
one-to-one correspondence.

Isomorphic objects are considered indistinguishable within category theory. One
way to understandwhy is to remember that category theory is about relationships, and
that isomorphic objects relate in the same way to other objects. Let’s talk about this in
terms of generalized elements.

Fix a shape c. Recall that a morphism f : a → b induces a function from the
generalized elements of a to those of b. If f is an isomorphism, then this function is a
bĳection.

Proposition 1.62. Let f : a → b be an isomorphism. Then for all objects c, we have a
bĳection

C(c , a) C(c , b)
f ◦−

f −1◦−

To see this, consider the following diagram.

c

a b

h h′

ida

f

f −1

idb

Given a generalized element h : c → a of a, f ◦ − sends it to h′ � f ◦ h. Conversely,
f −1 ◦ − sends h′ to f −1 ◦ h′ � f −1 ◦ f ◦ h � h, since f and f −1 are inverses.

Exercise 1.63.
1. What is the composite f ◦ − followed by f −1 ◦ −?
2. Prove Proposition 1.62.

♦

In otherwords, Proposition 1.62 says that for each shape c, if a and b are isomorphic,
their generalized elements are in one-to-one correspondence. In general, morphisms
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that are not isomorphisms may lose information: they need not induce a bĳection on
generalized elements. Using the intuition of Section 1.2.3, if f is not an isomorphism,
then the induce function f ◦ − it may collapse two generalized elements of a, or may
not cover the entire set of generalized elements of b.

1.4 Categories and Haskell

So far it’s been all math and philosophy; let’s get to some programming. In the intro-
duction to this chapter, we spoke about how composition is at the core of programming,
and saw how we can take two Haskell functions, such as length and words, and com-
pose them using the . syntax to get a new function.

We’ve also claimed that categories are a mathematical tool for thinking about com-
position. So perhaps, then, it might be useful to think about Haskell categorically. This
indeed is the main lesson of this book: thinking about Haskell categorically allows us
to find powerful ways of expressing ourselves using Haskell. But there are questions
to be answered. First, what is a Haskell function? And second, if Haskell functions are
to be thought of as the morphisms of a category, what are the objects?

1.4.1 The lambda calculus

AHaskell function is based on the notion of mathematical function. Like a mathemat-
ical function, it captures the notion of an input–output machine. But while the notion
of mathematical function focusses on the semantics of this machine, being simply a
description of all input–output pairs, the notion of Haskell function is motivated by the
syntax, or how to describe suchmachines. So aHaskell function is a certain sort of term
that can be constructed in the Haskell programming language, that can be thought of
as an input–output machine. This brings us to the lambda calculus.

Haskell’s syntax is based on the lambda calculus. The lambda calculus comes to
us from Alonzo Church’s work in mathematical logic in the 1930s. It is a neat, com-
pact language for writing down mathematical functions using two primitive notions:
lambda abstraction and function application.

We begin with some variable symbols, like x, y, z, and so on. Sentences in the lan-
guage of the lambda calculus are called lambda terms, and these variables are considered
lambda terms themselves.

Given a lambda term A and a variable x, lambda abstraction creates a new lambda
term λx.A.2 This can be thought of as declaring that any instance of x in the lambda
term A should be thought of as a variable; in other words, the new lambda term can
be thought of as, in some sense, a ‘function’ where x is the input.

Given two lambda terms A and B, function application creates a new lambda term
AB. If we are thinking of A as a function of some variable x, then we think of this as

2λ is the symbol for the Greek letter lamdba.
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replacing all occurrences of x in A with B. We also include parentheses in the language,
to make the order of construction of a term explicit.

For example, here are some lambda terms that you might see:

x x yz λx.x λx.x y λx.(λy.x) (λx.xx)(z y) (λx.yx)(λz.z)

The rules of the lambda calculus say that we should consider two lambda terms the
same if we can turn one into another by this idea of function application. Take for
example the lambda term (λx.xx)(z y). We treat x as a variable, and z y as the value
to substitute for this variable. So we say that this term is the same (more technically,
‘evalutes’ or ‘reduces’ to) the term (z y)(z y). Similarly, we have examples:

(λx.x)y � y (λx.x y)(zz) � (zz)y (λx.(x y)x)(λz.z) � ((λz.z)y)(λz.z) � y(λz.z).

Notice that the lambda term λx.x behaves like an identity function: given some x, it
just returns x.

We also consider two lambda terms the same if we can obtain one from the other
just by changing the names of the variables; for example λy.y is considered the same
as λx.x. A technical point is that special care has to be taken to avoid variable name
conflicts when substituting. For instance, if A is λy.(λx.x y) and B contains x, in order
to avoid unintentionally using the same name for two distinct variables, we have to
rename the first x before evaluating AB. This is okay because λy.(λx.x y) is the same
as λy.(λz.z y) and so on.3

Exercise 1.64 (Church Booleans). While simple, the lambda calculus is a very ex-
pressive language. This makes it a good choice for building a language like Haskell.
One frequently useful construction in a programming language is conditional logic:
statements such as ‘if t then A else B’. Here t is some proposition: a statement that
evaluates to true or false. Here’s one way conditionals can be modelled in the lambda
calculus.

Define the following lambda terms:

True � λx.(λy.x)
False � λx.(λy.y)
Cond � λx.x

To express ‘if t then A else B’, wewrite Cond((tA)B), where t evaluates to True or False.
1. Show that Cond((TrueA)B) � A.
2. What is Cond((FalseA)B)?
3. Let And � λp.(λq.(pq)p). What is (And True)False?

3This renaming is intuitively straightforward, but producing unique names for variables when im-
plementing interpreters is a non-trivial problem.
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♦

Exercise 1.65 (The Y combinator). The Y combinator is an iconic lambda term whose
reduction does not terminate; if we keep trying to evaluate it by substitution, it only
grows. It is defined as follows:

Y � λ f .
(
(λx. f (xx))(λx. f (xx))

)
Show that Y1 � 1(Y1), and hence Y1 � 1(1(Y1)) � 1(1(. . . (1(Y1))) too.

The Y combinator can be used to express recursion in the lambda calculus. ♦

Amore formal, and thorough, introduction to the beautiful topic of the lambda cal-
culus can be found inmany textbooks on logic and programming languages, including
[***]. We’ll not go into further detail here. What matters for us, is that Haskell lets us
almost directly employ this same notation. For example, to write the identity function
in Haskell, we may write:

\x -> x

The Greek letter lambda is replaced, in ASCII, with a backslash \ presumably because
it looks like the back part of a lambda λ, and the dot is replaced with an arrow.

Importantly, Haskell allows us to give names to terms – “abstracting” them – and
so we would define id to be the identity function as follows:

id = \x -> x

This is usually not necessary. The identity function is part of the standard Haskell
library called Prelude, which is by default loaded into any program. If we allow
ourselves to use some other functions from Prelude, we can also define functions such
as:

square = \x -> x^2

implies = \x -> \y -> not y || x

Exercise 1.66. Fire up GHCi (see ?? ), type in these definitions of square and implies.
Then play around a bit. What happens when you type in square 7? square 190517?
square x? What about implies True False?

Also notice that id is already defined. Try for example id 4. ♦
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Haskell Note 1.67 (Pattern matching). There is an alternative, and by far more common,
syntax for functiondefinition, usingHaskell’s patternmatching features. In this syntax,
we might write the above three functions as:

id x = x

square x = x^2

implies y x = not y || x

But keep inmind that this is just “syntactic sugar”: the compiler converts the pattern
matched syntax down to the more basic lambda syntax.

1.4.2 Types

The lambda calculus is very expressive. In fact it’s Turing complete, which means that
any program that can be run on a Turing machine can be also expressed in lambda
calculus. A Turing machine is an idealized computer that has access to an infinite tape
fromwhich it can read, and to which it can output data. And just like a Turingmachine
is totally impractical from the programmer’s point of view, so is the lambda calculus.
For instance, it’s true that you can encode boolean logic and natural numbers using
lambda expressions—this is called Church encoding—but working with this encoding
is impossibly tedious and error prone, not to mention inefficient. More significantly,
because any lambda term may be ‘applied’ to any other lambda term using function
application, it’s okay to apply a number to a function, even if the result is meaningless.
Imagine debugging programs written in lambda calculus!4

To fix this, even though Haskell is based on the lambda calculus, not every lambda
term can be translated to Haskell. For example, consider the lambda term λx.xx. This
function takes another term A, and applies A to itself: A is fed to itself as its argument!
This behavior is hard enough to reason about that it’s not allowed in Haskell. The
following code doesn’t compile:

ouroboros = \x -> x x

So how do we know when we’re allowed to translate a lambda term? Types.
More properly, we should say Haskell’s syntax is based on the simply-typed lambda

calculus. Every Haskell term is required to have a type. These types ensure Haskell
terms and functions can’t be composed willy-nilly: the target type of one must match
the source type of the next.

If a term x has type A, we write:

4There is also the issue of the Kleene-Rosser paradox (or its simplified version called Curry’s paradox),
which shows that untyped lambda calculus is inconsistent; but a little inconsistency never stopped a
programming language from being widely accepted.
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x :: A

In fact, in GHCi, you can ask what a term’s type is, using the command :t or :type.
For example:

Prelude>:t "hi"

"hi" :: [Char]

This tells you that the string "hi" is a list of characters.

Exercise 1.68. Fire up GHCi. What are the types of the following terms?
1. True
2. 42
3. "cat"
4. \x -> x x

♦

Exercise 1.69. Recall the Y combinator from Exercise 1.65. Try to assign the Y combi-
nator a type. What goes wrong? ♦

Types are what they sound like: they describe the type of data a term is meant
to represent. In Haskell we have some built-in types, like Integer, whose terms are
arbitrary precision integers, and Int, which is its fixed size companion (with present
implementations, usually a 64-bit integer; that is, an integer from −263 to 263 − 1). In
practice, a fixed-size representation is preferred for efficiency reasons, unless you are
worried about overflow (e.g., when calculating large factorials). A built-in type we
have just seen is Char; its terms are unicode characters. A lot of common types, rather
than being built-in, are defined in the Prelude. Such types include strings String and
booleans, Bool. Much of this course is about how to construct new types from existing
types, and categorical ideas like universal constructions help immensely.

Since every Haskell term is required to have a type, sometimes it’s your respon-
sibility to tell the Haskell compiler what type your term is. This is done by simply
by declaring it, using the same syntax as above. So to tell Haskell compiler you’re
constructing a term x of type A, we write:

x :: A

Note that it’s not necessary to declare the type of absolutely every line of code: the
Haskell compiler has a powerful type inference system built in, and will be able to
work with a bare minimum of type declarations. Having said that, specifying types
explicitly will help you catch errors in your code. Experienced Haskell programmers
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often start by defining types first and then specifying the implementations, in what is
called type-driven development.

Haskell Note 1.70. InHaskell, the names of concrete types start with an upper case letter,
e.g. Int. The names of type variables, or type parameters, like a in the example below,
start with lowercase letters.

We defined the identity function id without giving a type signature. In fact our
definition works for any arbitrary type. We call such a function a polymorphic function.
We’ll talk about polymorphism in more detail in Section 3.5.2. For now, it’s enough to
know that a polymorphic function is defined for all types.

It’s possible, although not necessary, to use the universal quantifier forall in the
definition of polymorphic functions:

id :: forall a. a -> a

This latter syntax, however, requires the use of the language pragma ExplicitForAll
(we’ll explain this later).a

aNote that the period after the forall clause is just a separator and has nothing to do with function
composition, which we’ll discuss shortly.

Remark 1.71 (Types vs sets). Types are very similar to sets, and it frequentlywill beuseful
to think of the typedeclaration x :: A as analogous to the set theoretic statement x ∈ A;
i.e. that x is an element of the set A. There are some key differences though, which the
category theoretic perspective helps us keep straight. The main difference is that, in
the world of sets, sets have elements. So given a set A, it’s a fair question to ask what
its elements are, or whether a particular x is an element of A. Types and terms are the
other way around: terms have types.

More formally, x ∈ A is a predicate, a yes or no question that you can prove or
disprove. So when somebody hands you an x, you may ask, is this an element of A?
Conversely, x :: A is a judgment, an assertion—it defines x as being of the type A, and
it doesn’t require a proof.

Exercise 1.72. Ponder the differences and similarities between the set of integers Z,
and the Haskell types Integer and Int. ♦

1.4.3 Haskell functions

In category theory, we write f : a → b to mean f is a morphism from a to b. In other
words, we are implicitlyworking in some category C, and f is an element of the homset:

f ∈ C(a , b)
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For example, using this notation in the category Set, we write f : A→ B for a function
from a set A to a set B.

In Haskell, we can also declare some terms as Haskell functions, using an almost
identical syntax. Given two Haskell types A and B, there is a A -> B whose terms are
(Haskell) functions accepting an A and producing a B. So for example, since the logical
operation ‘not’ accepts a boolean and returns a boolean, we have

>:t not

not :: Bool -> Bool

We call the type A -> B the type of functions from A to B.
When defining a mathematical function, it’s necessary to first specify the domain

and codomain. For example, we might want to define a function f that squares an
integer, so we write f : Z → Z. We might then define the function itself: f (x) � x2.
Similarly, when defining a Haskell function, it is customary to first declare its type; this
is often referred to as its type signature. So, for example, to define the function square,
we might first give the type signature

square :: Integer -> Integer

A type signature must then be accompanied by an implementation. We have to tell the
computer how to evaluate a function. We have to write some code that will be executed
when the function is called; for example

square x = x^2

Since the practice of programming in Haskell is all about writing Haskell functions,
we’ll spendmany of the chapters to come discussing techniques for defining functions.
These techniques will be informed by categorical thinking.

Remark 1.73 (Haskell functions vs mathematical functions). As we have already noted,
just as types are not the same sets, functions inHaskell are not the same asmathematical
functions between sets. But we can make some remarks about their similarities and
differences.

One way to compare Haskell functions and mathematical functions is to suppose
that the terms of the domain and codomain types form sets, and then to write down
the set of input–output pairs for the Haskell function. Let’s call this the denotation of
the Haskell function. In many cases we care about, the denotation does indeed define
a mathematical function, and this denotation often captures the key idea behind the
Haskell function. For example, the Haskell type Bool can be represented by the set
{True, False}, which is isomorphic to B, and the denotation of the Haskell function
not is then the usual ‘not’ mathematical function.
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An important part of the philosophy of Haskell is that denotations of Haskell func-
tions should, as far as possible, be deterministic: the same input value will always
produce the same output value. In programming language jargon, we say that Haskell
is a pure, functional language. But, in a programming language, producing a valuemeans
executing an algorithm. As long as the algorithm takes reasonable amount of time for
every possible input value, it defines a function. But there are recursive algorithms
that never terminate, and they don’t have a simple set-theoretic denotation.

Exercise 1.74. Consider the mathematical function 1 : Z→ Z, 1(x) � x + 1.
1. Implement 1 as a Haskell function g' :: Integer -> Integer.
2. Implement 1 as a Haskell function g'' :: Int -> Int.
3. What is g'' (2^63 - 2)?
4. What is g'' (2^63 - 1)?
5. What are the denotations of g' and g''? How do they compare to 1?

♦

1.4.4 Composing functions

Wenowhave encounteredHaskell functions. What dowedowith functions? Compose
them! As function composition is such a basic operation, in Haskell we give it almost5
the simplest name, a dot:

.

Function composition in Haskell is written in application order. This means that the
composite of a function f :: a -> b and a function g :: b -> c is written

g . f :: a -> c

This is pronounced ‘g after f’.

Haskell Note 1.75. Note that we’ve written composition as an infix operator. This is
an operator of two arguments that is written between the two arguments. Another
example is addition: we write 4 + 5 to add two numbers.

To use an infix operator as an outfix operator—that is, a binary operator that is
written before its arguments—we place it in parentheses. So 4 + 5may also be written
(+) 4 5.

Composition is itself a Haskell function. What is its type signature? One way to
think about it is that it takes a pair of functions, and returns a new function. TheHaskell

5Function application is themost commonoperation inHaskell, so its syntax is reduced to the absolute
minimum. Just like in the lambda calculus, in most cases a space between two symbols is enough.
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definition takes advantage of currying. We’ll talk much more about this in Chapter **,
but in this case, it’s a trick that allows us to consider a function of two arguments as
a function of the first argument that returns a function of the second argument. This
trick gives the type signature:

(.) :: (b -> c) -> ((a -> b) -> (a -> c))

The function type symbol -> by default associates to the right, so this is equal to the
type

(.) :: (b -> c) -> (a -> b) -> a -> c

Note that the rest of the parentheses are essential.
Here’s the implementation. Given two functions g :: b -> c and f :: a -> b,

we produce a third function defined as a lambda. The only thing we can do with the
functions is to apply them to arguments, and that’s what we do:

(.) = \g -> \f -> \x -> g (f x)

Using pattern matching, we can also write this as

(.) g f = \x -> g (f x)

The result of calling fwith the argument x is being passed to g. Notice the parentheses
around f x. Without them, g f xwould be parsed as: g is a function of two arguments
being called with f and x. This is because function application is left associative. All
this requires some getting used to, but the compiler will flag most inconsistencies.

Composition is just a functionwith a funnyname, (.). You can forma functionname
using symbols, rather than more traditional strings of letters and digits, by putting
parentheses around them. You can then use these symbols, without parentheses, in
infix notation. So, in particular, the above can be rewritten:

g . f = \x -> g (f x)

or, using the syntactic sugar for function definition, simply as:

(g . f) x = g (f x)

Composition, just like identity before, is a fully polymorphic function, as witnessed by
lowercase type arguments. It could be written as:
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(.) :: forall a b c. (b -> c) -> (a -> b) -> a -> c

(g . f) x = g (f x)

Defining new morphisms by composing existing ones is used in the point-free style
of programming. Here’s an example, similar to the one in the introduction.

Example 1.76. Let’s call the function words with a string "Hello world!". Here’s how
it’s done:

Prelude> words "Hello world!"

["Hello","world!"]

The result is a comma-separated list of words with spaces removed.
Now let’s call the function concat to concatenate the entries of the list:

Prelude> concat ["Hello","world!"]

"Helloworld!"

We can compose the two functions using the composition operator, which is just a
period “.” between the two functions. Let’s apply it to the original string:

Prelude> (concat . words) "Hello world!"

"Helloworld!"

Haskell Note 1.77 (Binding and parentheses). Notice the use of parentheses. Without
them, the line:

length . words "Hello world!"

would result in an error, because function application binds stronger than the compo-
sition operator. In effect, this would be equivalent to:

length . (words "Hello world!")

The compiler would complain with a somewhat cryptic error message. This is because
the composition operator expects a function as a second argument, and what we are
passing it is a list of strings.

Exercise 1.78. Consider the mathematical function f : Z → Z that sends an integer
to its square, f (x) B x2, and the function 1 : Z → Z sends an integer to its successor,
1(x) B x + 1.
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1. Write analogous Haskell functions to f and 1, implementing them both as func-
tions Int -> Int.

2. Let h B f ◦ 1. What is h(2)? Compute it both by hand and using your Haskell
functions.

3. Let i B 1 ◦ f . What is i(2)? Again, check that your hand and Haskell agree.
4. Let j B f ◦ 1 ◦ f . What is j(2)? ♦

1.4.5 Thinking categorically about Haskell

A category, recall, has objects, morphisms, identities, and composition. In more detail,
the morphisms go between objects, every object has an identity morphism, and if we
have two morphisms, one of whose domain is the other’s codomain, we can compose
them.

Haskell has types, functions, identities, and composition. The functions go between
types, every type has an identity function, and if the codomain of a function is the
domain type of another, then we can compose them.

This leads to an analogy: Haskell is like a category. This analogy is very powerful,
and this book is devoted to exploring the consequences. What is especially remarkable
is that this is only an analogy. Haskell is a programming language, a tool for expressing
computations, that is supported a community of developers andpractictioners. Haskell
is not one thing, but is a specification and many implementations, and both are under
constant change. Yet this analogy is useful no matter which version of Haskell one is
working with.

Even ifHaskell is not amathematical object, it is tempting to try tomake this analogy
precise, and people often speak of a fictitious category Hask, of Haskell types and
functions. We won’t delve deeply into the difficulties of making such a construction,
but we can briefly point out some difficulties. These mostly center around the question
of when two Haskell functions are the same. On one end of the spectrum, we might
say a Haskell function is exactly the code used to write it. But then id . f and f
have different code, and so our category doesn’t obey the unit laws. Closer to what we
mean when we talk about a Haskell function, one might say two Haskell functions are
equal if they have the same denotation. But the concept of denotation itself is not well
defined, and making it so poses difficulties.

In the end, perhaps a useful comparison is the Haskell type Int. This is usually
(but not always) presently implemented as 64-bit integers, and hence has values −263

to 263 − 1. This is decidedly not the set of integers: for example it does not contain the
number 263, and if we try to write it, we get−263. But it is enough like the integers—e.g.
there’s a 0, and a 1, and certain laws like the unit law for addition and multiplication
hold—that it’s often useful to think about it as though Int were the set of integers.
Moreover, Int is often more practical to use than the arbitrary precision integer type
Integer, because people have found that we get much better performance when we
truncate.
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In Exercise 1.78 we used the type Int to help us express ideas and compute results
about the integers, and used the integers to help us think about what our Haskell
programs do. As we go forward, we’ll similarly learn to use Haskell to help us
express categorical ideas, and category theory to help us think about what our Haskell
programs do.



Chapter 2

Universal constructions and the
algebra of types

2.1 Constructing datatypes

We have seen that types play a fundamental role in thinking about programming from
a categorical point of view. Haskell, like many typed programming languages, starts
with a collection of base types, such as a type Char of characters, Int of integers, or
Bool of truth values. But programming is about using some simple building blocks
to construct rich and expressive behavior, and often these types are not enough. To
make a language more expressive, we introduce ways of making new types from old,
introducingoperations on types such as taking theproduct, the sum, or the exponential.
These operations define an ‘algebra’ of types.

For example, let’s say we want to construct a type representing a standard deck of
French playing cards. Each card has a rank (which is either a number from 2 to 10 or
one of jack, queen, king, or ace) as well as a suit (diamonds ♦, clubs ♣, hearts ♥, or
spades ♠). For simplicity, let’s say we’re given types Rank and Suit. The type Card of
cards should simply have values that consist of a rank and a suit, such as the two of
diamonds (2♦), or the ace of spades (A♠). A type constructed from other types in the
way Card was constructed from Rank and Suit is known as a product type.

In mathematical notation, we would use the same multiplication symbol that we
use for arithmetic: Card � Rank × Suit. But in Haskell, we pun on the way terms of
this type are represented—namely as pairs (r, s)—and thus denote the product type
by (Rank, Suit).

Product types are useful whenever we wish to construct a type whose values con-
sist of a value of one type and a value of another. Other examples include the type
(String, Int) of name and age pairs, the type (Int, Int) representing locations on
a two-dimensional grid, or the type (Int,Int,Int) representing points on a three-
dimensional grid.

35
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An additional, and critical, part of a product type are its data accessors. Given a
card, we should be able to extract both its rank and suit; that is, we should have two
functions

getRank:: Card -> Rank

getSuit:: Card -> Suit

Another common way of constructing new types is a sum type; these are types that
can take values from either one type or another. For example, if you’re setting up a
two-factor authentication scheme, you might give the user a chance to select a phone
number or an email. Using the plus sign from arithmetic to represent a sum type, we
might then write TwoFA � PhoneNumber + EmailAddress.

Sum types also come with associated functions. For example, when designing a
login page, depending on user input we might call one of the two functions

phone2FA :: PhoneNumber -> TwoFA

email2FA :: EmailAddress -> TwoFA

Finally, given two types A and Bwe can look at the type A -> B of all functions from
thefirst to the second. Thiswouldgenerally be called the function type in aprogramming
context, and the exponential type in category theory context; see Exercise 1.14 for why.
Passing functions as data is essential in functional programming and very useful in
general.

Sowe have three ways of constructing new types from old, and theymay seem quite
different. But in fact they all have something very deep in common, namely they are
all characterized by universal properties. This is the main purpose of this chapter.

Aswe keep repeating, a category describes aworld of objects and their relationships.
Just aswith people, certain objects aremade special, or characterized by how they relate
to others. For example, in Haskell the unit type () has the special property that for
every other type A, there is a unique function to it, namely \a -> (). Moreover, up to
isomorphism, the unit type is the only type with this property. We say that the unit
type is defined by its universal property.

Defining objects by their universal properties is a common theme throughoutmath-
ematics and programming. Next in this chapterwe’ll get to some examples of universal
constructions that are particularly important: terminal objects, products, initial objects,
and coproducts. These are all very well modelled in Haskell, and we’ll discuss the dif-
ferent ways in which they can be implemented and used.
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2.2 Universal constructions

2.2.1 Terminal objects

One of the simplest examples of a universal object in a category is a terminal object.

Definition 2.1. Let C be a category. An object 1 in C is called a terminal object if for
every object a there is a unique morphism !a : a → 1.

In what sense is such an object 1 universal? Well, it’s universal in the sense that it’s
defined by a special property with respect to all other objects: for all objects a in C, there
is a uniquemorphism to it.

People sometimes refer to the maps of the form ! as “bang”, maybe because of how
“!” is sometimes used in English to indicate something immediate or extreme. The
map to a terminal object is both immediate and extreme: there is exactly one way
“bang!" to go from c to the terminal object.

Exercise 2.2. What does the universality of 1 tell us about morphisms from 1 to 1? ♦

Exercise 2.3. Which of the following categories has a terminal object?

1. 1• 2• 3• 2.

1• 2•
f

1

f # 1 � id1
1 # f � id2

3.

3•
1• 2•

3′•

♦

Example 2.4 (Many terminal objects). Any set containing exactly one element is a ter-
minal object in Set. For example, the sets {1}, {57}, and {∗} are all terminal objects.
Why? Suppose we have another set X. Then what are the functions, for example, from
X to {57}? For each element x ∈ X, we need give an element of {57}. But there is
only one element of {57}, the element we call 57. So the only way to define a function
f : X → {57} is to define f (x) � 57 for all x ∈ X.

Example 2.5 (Constant morphisms). Suppose that C has a terminal object 1, and for any
object c, let !c : c → 1 denote the unique morphism. We say a morphism f : c → d is
constant if there exists a morphism 1 : 1→ d such that f � 1◦!c . It’s easy to see how it
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works in Set:

•1
•2
•3
•4

•1 •1
•2
•3
•4

Said another way, a morphism is constant if it “factors through” the terminal object.

Exercise 2.6.
1. Name a poset with a terminal element.
2. Name a poset without a terminal element. ♦

Example 2.7. In a poset, a terminal object is a greatest element. This is because in a
poset we interpret a morphism from a to b as the relation a ≤ b. Suppose we have a
terminal object 1. Then, by definition, for any object a, we have a morphism from a to
1 and hence a ≤ 1. Thus 1 is a greatest element. For example, in the poset of subsets of
{x , y , z}, ordered by inclusion, the total subset {x , y , z} itself is a terminal object (and
in fact the only one).

We have already seen that Set has many terminal objects. It’s also possible for a
category not to have any terminal objects. For example, the posetN of natural numbers
ordered by the usual ≤ ordering has no greatest element, and hence no terminal object.

Exercise 2.8. Does the category of partial functions have a terminal object? If so, what
is it? ♦

Note that we’ve sometimes said “the” terminal object, but we give a definition for
“a” terminal object. It so happens that any universal object is unique up to unique
isomorphism, and so we consider this strong enough to simply say “the”. If you and I
give two different terminal objects, we know at least there will be a unique morphism
that describes how to transform one into the other, and vice versa, without losing or
gaining any information.

Exercise 2.9 (All terminal objects are isomorphic). Let x and y be terminal objects
in a category. Show that they are isomorphic. In fact, show that there is a unique
isomorphism between them. (Hint: why is there a morphism x → y? How about
y → x? Can you name a morphism x → x? How many other morphisms are there
x → x?) ♦
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Definition 2.10. Let C be a category with a terminal object 1. A global element of an
object a is a morphism 1→ a.

Exercise 2.11. For each of the following statements about an object c, decide if it is
equivalent to the statement “c is terminal”. If so, provide a proof, if not, find a category
in which they are not.

1. The object c has a unique global element.
2. There exists another object d for which there is a unique generalized element of

shape d in c.
3. For all objects d, there is a unique generalized element of each shape d in c

♦

Exercise 2.12. Recall the category Cat from Definition 3.25. Show that the category 1
is the terminal category in Cat. ♦

2.2.2 Initial objects

A terminal object lies at the ‘end’ of a category: every object points to it. One might
also look for objects at the ‘beginning’ of a category. These are called initial objects.

Definition 2.13. Let C be a category. An object 0 in C is called an initial object if for
every object a there is a unique morphism !a : 0→ a.

Example 2.14. In a poset, an initial object is a least element.

Exercise 2.15. In Set, the initial object is the empty set, �. Why? (Since the empty set
has zero elements, we often write 0 for an initial object in a category.) ♦

Exercise 2.16. Someone tells you an initial object in C is just a terminal object in Cop.
What do they mean? Are they correct? ♦

Exercise 2.17. Show that a trivial category 0 with no objects or morphisms is initial in
Cat. (First, convince yourself that this is really a category.) ♦

The initial object is defined by its mapping out property. As a shape, you may think
of it as “a shape with no shape” or the emptiness. The definition tells you that you can
see this shape in every other object and in itself.
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We’ll find thismapping out property of initial objects very useful in the next chapter,
where we show how to construct each recursive type as an initial object in a certain
category, and use its mapping out property to define recursive functions.

Exercise 2.18. Show that if there is a morphism from the terminal object to the initial
object (in other words, if the initial object has a global element) then the two objects are
isomorphic (such an object is then called the zero object.) ♦

2.2.3 Products

So far we’ve considered terminal objects, which are defined using a mapping-in prop-
erty; and initial objects, whichhave amapping-out property. Objectswith amapping-in
property are called limits: a terminal object is a kind of limit. Things with a mapping-
out property are called colimits: an initial object is a kind of colimit. In this section
we’ll discuss products, which are a kind of limit; you’ll soon hear us talking about a
mapping-in property.

Given two sets X and Y, we can always construct their cartesian product X × Y.
This is the set whose elements are pairs (x , y), where x ∈ X and y ∈ Y. This is a useful
object to construct; to return to the playing cards example of the introduction to this
chapter, the set of playing cards is simply the cartesian product of the set of ranks and
the set of suits.

The construction of the cartesian product refers to elements, and thus cannot be
performed in an arbitrary category. Indeed, in an arbitrary category Cwith a terminal
object 1, even if we replaced elements with global elements, the set of pairs of global
elements is still a set, not an object of C.

The categorical way to generalize the cartesian product of sets is to think (surprise!)
in terms of relationships. Note that the cartesian product of sets has a special mapping-
in property: if wewant to define a function f : A→ X×Y from some set A to a product,
it is enough to define a function fX : A → X and fY : A → Y. Then we can let f (a) be
the pair ( fX(a), fY(a)) ∈ X × Y. That is, a morphism A→ X × Y in Set is the same as a
pair of morphisms A→ X and A→ Y. So products are about pairs, but they’re about
pairs of morphisms, rather than elements.

Definition 2.19. Let x and y be objects in a category C. A product of x and y consists
of three things: an object, denoted x × y and two morphisms π1 : x × y → x and
π2 : x × y → y, with the following universal property: For any other such three things,
i.e. for any object a andmorphisms f : a → x and 1 : a → y, there is a uniquemorphism
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h : a → x × y such that the following diagram commutes:

a

x × y

x y

f 1h

π1 π2

Often we just refer to x × y as the product of x and y. We call the morphisms π1 and
π2 projection maps. We will frequently denote h by h � 〈 f , 1〉.

Example 2.20. A product in a poset is a greatest lower bound. For example, consider
the poset of natural numbers ordered by division. Then the product of 12 and 27 in
this poset is 3.

Exercise 2.21.
1. In the poset (N, ≤), where 5 ≤ 6, what is simplest way to think about the product

of m and n?
2. Write downaposet forwhich there are two elements that don’t have aproduct. ♦

Example 2.22. The product of two sets X and Y in Set is exactly the cartesian product
X × Y, with the projection functions π1 : X × Y → X and π2 : X × Y → Y defined
respectively by π1(x , y) � x and π2(x , y) � y.

To prove this, given functions f : A → X and 1 : A → Y, we must show there is a
unique function h : A→ X×Y such that π1◦h � f and π2◦h � 1. To see there exists a h
with thisproperty, define h(a) � ( f (a), 1(a)). Note thatπ1(h(a)) � π1( f (a), 1(a)) � f (a),
and similarly for 1, so this h does obey the required laws.

To see that this h is the uniquemorphismwith this property, recall that π1(x , y) � x,
and π2(x , y) � y. Fix a, and let x and y be such that h(a) � (x , y). Then x � π1(x , y) �
π1(h(a)) � f (a), and similarly y � 1(a). So h(a) � ( f (a), 1(a)).

Example 2.23. Suppose some category C has a terminal object 1. Then for any object x,
1 × x is isomorphic to x.

The isomorphism is witnessed by morphisms (!x , idx) : x → 1 × x, and π2 : 1 × x →
x. The universal property of the product shows that both (!x , idx) ◦ π2 � id1×x and
π2 ◦ (!x , idx) � idx .

Similarly, x × 1 � x. We thus say that the terminal object is a unit for the product.
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Exercise 2.24. Let’s work out an explicit example in the category Set. Choose sets
X,Y, Z and functions f : X → Y and 1 : X → Z What is h � ( f , 1)? Do you think this
is a good notation? ♦

Note that, just like terminal objects, products are defined by amapping-in property:
the product x × y receives a unique map from every object that has maps to x and y.
We could say that x × y is a “one-stop shop for morphisms to x and to y. If you want a
morphism to x and to y, you just need a morphism to x × y.

An object with maps to x and y is an example of what is known as a cone, and in
fact products can be understood as terminal objects in a certain category of cones. A
corollary of this is that since products in C are an example of terminal objects in some
related category, they are also unique up to unique isomorphism by Exercise 2.9.

Why is this useful for thinking about programming; what is the computational
content of this idea? The problem it solves is one of defining a function h : a → x × y.
The product can be used to decompose this problem into two simpler problems: one
function a → x and another a → y. Indeed, the universal property of the product
implies that we have a one-to-one correspondence (i.e. an isomorphism of sets)

C(a , x × y) � C(a , x) × C(a , y). (2.25)

This means that in order to specify any morphism in the set on the left (i.e. one
morphism a → x × y), its enough to name its corresponding element in the set on the
right (i.e. a pair consisting of a morphism a → x and a morphism a → y). This sort
of decomposition is a common theme in using universal constructions for structuring
programs.

Another viewpoint on products is via global and generalised elements.

Proposition 2.26. The set of global elements of a product is the cartesian product of
the sets of global elements of the factors.

The proof is simply to choose a � 1 in Eq. (2.25):

C(1, x × y) � C(1, x) × C(1, y).

The left hand side is the set of global elements of x × y, while the right hand side is the
cartesian product of the set of global elements of x and that of y.

1

a × b

a b

x y(x ,y)

π1 π2
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Exercise 2.27. Given a fixed shape c, show that a c-shaped (generalized) element of
a× b is the same as a pair consisting of a c-shaped element of a and a c-shaped element
of b. ♦

Exercise 2.28 (Products of morphisms). Suppose we have morphisms f : a → b and
1 : c → d, such that products a × c and b × d exist. Then we can construct a morphism
f × 1 : a × c → b × d, known as the product of f and 1.

This morphism defined as follows: f × 1 B ( f ◦ π1 , 1 ◦ π2). Note that, as usual, the
map into the product b × d is define by pairing a map into b with a map into d.

Show that in the category Set, the function f × 1 sends a pair (x , y) ∈ a × c to the
pair ( f (x), 1(y)). ♦

Exercise 2.29 (n-ary products). Given three objects x , y , z, one can define their ternary
(three-fold) product Px ,y ,z to be a one-stop shop for maps to all three. That is, Px ,y ,z

comes with morphisms π1 : Px ,y ,z → x and π2 : Px ,y ,z → y and π3 : (x , y , z) → z, and
for any other P′ equipped with morphisms p1 : P′ → x, p2 : P′ → y, and p3 : P′ → z,
there is a unique morphism (p1 , p2 , p3) : P′ → Px ,y ,z such that pi � πi ◦ (p1 , p2 , p3) for
each i ∈ {1, 2, 3}.

1. Suppose that C has a terminal object. Show that if it has ternary products then it
also has (binary, i.e. ordinary) products.

2. Show that if C has binary products then it also has ternary products. That is,
show that Px ,y ,z is isomorphic to (x × y) × z. ♦

If a categoryChas a terminal object and (binary) products, then it has n-ary products
for all n: the terminal object is like the 0-ary product. We would say that C has all finite
products.

Definition 2.30. We say that a category is a cartesian category if it has all finite products.

2.2.4 Coproducts

We may dualize the definition of product to obtain the the definition of coproduct.
In contrast to the mapping-in property that defines products and terminal objects,
coproducts (like initial objects) are defined by a mapping-out property.

Definition 2.31. Let x and y be objects in a category C. A coproduct of x and y is an
object, denoted x + y, together with morphisms i1 : x → x + y and i2 : y → x + y,
such that for any object a and morphisms f : x → a and 1 : y → a, there is a unique
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morphism h : x + y → a such that the following diagram commutes:

x y

x + y

a

i1

f

i2

1
h

We call the morphisms i1 and i2 inclusion maps. We will frequently denote h by
h � [ f , 1].

Remark 2.32. Often we just refer to just the object x + y as the coproduct of x and y,
even though the coproduct technically also includes the inclusion maps i1 , i2.

Remark 2.33. Recall Proposition 2.26: a map from an object a into the product x × y is
the same as a map a → x and a map a → y. Dually, a map out of the coproduct x + y
to a is the same as a x → a and a map y → a.

This again has consequences forwriting code. Supposewewant to define a function
h : a + b → c. The coproduct decomposes the task into two simpler problems of defining
two functions a → c and b → c.

Example 2.34. The coproduct of two sets X and Y in Set is exactly the disjoint union
X t Y, which contains a unique element for every x in X and a unique element for
every y in Y. Since it is the coproduct, we also write this set X + Y. The inclusion map
ι1 : X → XtY simply sends x in X to its corresponding element of XtY, and similarly
for ι2 : Y → X t Y.

Exercise 2.35. What is the coproduct of two elements in a poset? ♦

Example 2.36. Just as a terminal object is a unit for products, an initial object 0 is a unit
for coproducts. That is, for any object x in a category with coproducts 0+x � x+0 � x.

Definition 2.37. We say that a category is cocartesian if it has an initial object and every
pair of objects has a coproduct. We say that a category is bicartesian if it is both cartesian
and cocartesian.

2.3 Type constructors

Let’s bring this thinking to Haskell. We’ve learned about four universal constructions:
terminal objects, initial objects, products, and coproducts. How can these help us think
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about programming? In fact, since these four universal constructions are so central to
the construction of useful types, corresponding constructions are built-in to Haskell
and the Prelude. To describe these, we’ll need to talk a bit about constructing types
more generally.

2.3.1 Type constructors

In Haskell, we define types using the syntax

data TypeConstructor = DataConstructors

For example, the Prelude contains the following definition of the type Bool:

data Bool = True | False

Type variables may also be used; these must begin with a lower case letter. For
example, in the following type definition, a is a type variable.

data WithString a = MakeWithString a String

In these examples, Bool and WithString are called type constructors, since they
construct new types. The type variable a means that a type must be given to the
WithString constructor in order to construct a type; for example, given the type Int,
we get a type WithString Int, which is a type whose terms are integers with strings.

Type constructors define new types. To produce terms (or data) of these types, we
must use their data constructors. The type Bool has two data constructors, True and
False. Thus these are the two terms of type Bool. A term of type WithString amust
be constructed using the constructor MakeWithString, together with a term of type a
and a string. Thus this data constructor is a function

MakeWithString :: a -> String -> WithString a

Normally, function names start with a lowercase letter, but data constructors are an
exception: they are functions whose names start with an uppercase letter. Since each
type has its own data constructors, the compiler can use these data constructors (like
MakeWithString) as keywords that indicate the type of the term to follow: “whenever
I see MakeWithString x y, I check what type x has, say Int, check that y is a String,
and then and I’ll know that MakeWithString x y has type WithString Int."

Here’s howthe constructormaybeused to construct avalueof the typeWithString Int:

charles :: WithString Int

charles = MakeWithString 135 "bananas"
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The first line declares the type of the name1 charles as the type obtained by ap-
plying the type constructor WithString to Int. The second line declares charles
to have a specific value, obtained by passing 135 "bananas" to the data constructor
MakeWithString.

Once a value of the type WithString a is constructed, it is immutable. This again
is part of what makes Haskell a purely functional language. Because of immutability,
every value “remembers” the way it was created: what data constructor was used and
what value(s) were passed to it. This is why a value of type WithString a can always
be deconstructed. This deconstruction is called pattern matching. Here’s how it’s done:

extractString :: WithString a -> String

extractString (MakeWithString x y) = y

The pattern that is matched here is MakeWithString x y. It names the data con-
structor MakeWithString and the values passed to it x and y. When applied to the
above example,

extractString charles

will produce the string "bananas".

Exercise 2.38. Whydowewrite the pattern MakeWithString x y in parentheses? What
happens ifweomit themandwrite the expressionextractString MakeWithString x y?

♦

2.3.2 Unit and void

The unit type If we think of Haskell as a category, certain types will have certain
‘universal properties’, which can play an important role in structuring our programs.

A singleton type is a type with a unique, unparametrized data constructor. For
example, we could define the type

data Terminal = UniqueValue

Just any set with one element is a terminal object in the category Set, this type behaves
like a terminal object in Haskell: for every other type, there is only one way to define a
(total) function to Terminal.

It’s useful to have a canonical choice of terminal object, so the Haskell supplies a
special singleton type, known as the unit type. The unit type is already defined in any
implementation of Haskell, but if we were to define it, we would write:

1Informally, we and others might say this declares the type of the variable charles. Strictly speaking
there are no variables in Haskell, since the name implies variability or mutation. A declaration like this
binds a name to an expression. Traditionally, though, we call such a name a variable.
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data () = ()

This definition contains a pun, of a sort common in Haskell type definitions. The
symbol () (empty tuple) is being used in two, distinct ways: first as a type constructor
(ie. as the name of a type), and second as a data constructor (ie. as the name of a term
of that type). In fact, () is the only term of the type (), so this abuse of notation is not
so bad, assuming you can tell terms from types (the Haskell compiler can).

Note also that the name () is special syntax: ordinary, user-defined types cannot
contain parentheses.

We’ll see that the unit type is very useful when defining functions with side-effects,
a way to escape the purely functional aspects of Haskell.

Exercise 2.39. For all types a, define a function

bang :: a -> ()

Explain why the function you defined does the same thing as any other (total) function
you could possibly have defined. ♦

The void type The idea of an initial object inspires the empty Haskell type. While
again we might give it any name we like, the library Data.Void gives a standard
implementation with the name Void. The syntax for defining the type void is simple.

data Void

Note that it has no data constructors, because it’s empty! We can’t construct a term
of type Void.

There is a correspondence, called the Curry-Howard correspondence, saying that
each type T can be interpreted as a logical statement. The statement is true if the type is
inhabited; in other words, there is a way to produce a term of that type. Since Void has
no data constructor, there is noway to create a term of type Void—the logical statement
it represents is false.

Now in logic, the Latin phrase ex falso quodlibet (“from falsehood, anything follows”)
refers to the principle that if you can prove a contradiction, or false, anything follows.
An initial object thus behaves a bit like a false statement, in the sense that any other
object receives a morphism from it: given a proof of Void, you can prove anything. For
fun, we’ll refer the unique morphism from Void to any type a as exFalso

exFalso :: Void -> a

exFalso x = undefined
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The funny thing here is that whenever the program tries to evaluate undefined, it will
terminate immediately with an error message. We are safe, though, because there is
no way exFalso will be executed. For that, one would have to provide it with an
argument: a term of type Void, and no such term exists!

The library Data.Void calls this function absurd :: Void -> a.

Remark 2.40 (Function equality). You might be wondering why we consider absurd to
be the only function from Void to, say, Int. For example, what about this function:

vTo42 :: Void -> Int

vTo42 x = 42

Is this function different from absurd, as instantiated for Int? Function equality is
tricky. What we use here is called extensional equality: two functions are equal if,
for every argument, they produce the same result. Or, conversely, to prove that two
functions are different, you have to provide a value for the argument on which these
two functions differ. Obviously, if the argument type is Void, you can’t do that.

2.3.3 Tuple types

The next universal construction we introduced was the product. Let’s talk about how
to implement these in Haskell. This will be the first step in creating a library of useful
functions that we will use throughout this book.

Given two types a and b, we want to construct a type that behaves like their product
in our idealized Haskell category. To construct a new type, we use a type constructor:

data Pair a b = MkPair a b

The type constructor says that we have a new type, Pair a b, while the value con-
structor says that to construct a value of the type Pair a b, we specify a value of type
a and one of type b.

For example, let’s take a � Int and b � Bool.

p :: Pair Int Bool

p = MkPair 5 True

Recall fromDefinition 2.19 that a product consists of three things: in addition to the
product object, we have two projection maps. Just as in Set, in our Haskell version of a
product these maps extract the components of a pair. We can define these as follows.

proj1 :: Pair a b -> a

proj1 (MkPair a b) = a
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proj2 :: Pair a b -> b

proj2 (MkPair a b) = b

Note that we’ve used pattern matching to define these functions. Because we know
that a term of type Pair a b must be constructed using the constructor MkPair, we
may define a function out of Pair a b not by referring to the argument of the function
as somemonolithic variable x, but by referring to it as the constuction MkPair a b, and
hence giving us a name for both the first (a) and second (b) components of the pair.

Also note the punning between the type and term levels: we see the variable a in
the type Pair a b as well as the expression MkPair a b. In fact, these are two different
as, but closely related: we use this notation because the expression a is a term of type
a. This may be confusing at first, but becomes very efficient to read. And of course,
since the language (and compiler) separates the type level from the term level, there is
no ambiguity in meaning.

Exercise 2.41. Write a program that defines the value x � ("well done!", True) of
type Pair String Bool, and then projects out the first component of the pair. ♦

Haskell Note 2.42 (Built-in pair type). Just as for the void type, product types are so
useful that they’re implemented in the Haskell base with a special syntax, that mimics
the pair notation traditionally used for the cartesian product of sets. One might think
of it as defined using the following code:

data (a,b) = (a,b) --doesn't actually compile, but it's the idea

Here we have again taken our type–data level puns to the extreme, and given the
type constructor and data constructor the same name (,). The type constructor (a,b)
should be thought of as analogous to Pair a b, while the data constructor (a,b) is
analogous to MkPair a b.

The built-in pair type comes with projection maps

fst :: (a,b) -> a

fst (x,y) = x

snd :: (a,b) -> b

snd (x,y) = y

Fromnowonwhen discussing pairswe’ll default to the above hard-coded syntax (a,b)
rather than Pair a b.
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Haskell Note 2.43 (Tuple types). More generally, this tupling syntax can be used with
any number of entries, implementing the idea of n-ary products. For example, we can
use the type (Int,Int,String). The default projection maps fst and snd are only
defined for the pair types (a,b), however.

Haskell Note 2.44 (data, type, newtype). In addition to the keyword data for defining
new types, Haskell provides the keywords type and newtype for renaming types.

The keyword type allows creation of type synonyms: two names for the same type,
that are treated as identical by the compiler. For example, if we define

type AnimalName = String

then "elephant" :: String and "elephant" :: AnimalName both typecheck, and
any function that accepts a Stringwill accept an AnimalName.

The keyword newtype allows the creation of a type isomorphic to an existing type:
one must specify a single data constructor. For example, we might define

newtype AnimalName = MakeAnimalName String

This is similar in use to data with a single data constructor, but ensures that the
runtime representation of an AnimalName is identical to that of a String, and hence has
consequences for the efficiency of code.

Example 2.45 (Cards). In a standard 52 card deck of French playing cards, each card
has a rank and a suit. This is a pair type! We might define a type Card in Haskell as
follows:

type Card = (Rank, Suit)

newtype Rank = R Int

rank :: Rank -> Int

rank (R n) = n

Suitwill be defined in Example 2.53, after we have discussed sum types.

Using the universal property of products The universal property of the product
says that, given a type c, a pair of functions c -> a and c -> b is the same as a single
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function c -> (a,b). In other words, the types (c -> a, c -> b) and (c -> (a,b))
are isomorphic.

This isomorphism is very useful to us as programmers: it says we may construct a
function into a pair just by solving the simpler problems of constructing functions into
the factors! It’s helpful to explicitly have available the isomorphism between the two
types. In one direction, we have the function tuple.

tuple :: (c -> a, c -> b) -> (c -> (a, b))

tuple (f, g) = \c -> (f c, g c)

We may also implement the function tuple using pattern matching as follows:

tuple :: (c -> a, c -> b) -> (c -> (a, b))

tuple (f, g) c = (f c, g c)

In the other direction, we can define the function untuple.

untuple :: (c -> (a, b)) -> (c -> a, c -> b)

untuple h = (\c -> fst (h c), \c -> snd (h c))

Exercise 2.46. Show that tuple and untuple are inverses, and hence the types
(c -> a, c -> b) and c -> (a,b) are isomorphic. ♦

Haskell Note 2.47. The standard library Control.Arrow already includes the function
tuple, defined as an infix operator &&&. This operator is definedwith the type signature

(&&&) :: (c->a) -> (c->b) -> (c -> (a, b))

Note that this type signature is different from the one we used for tuple; we say this is
the curried version of the function. We’ll return to this topic later in this chapter.

Record syntax Product types are ubiquitous in programming, so Haskell provides
a lot of syntactic sugar to make them easier to use. The simplest product, a pair, is
relatively easy to deal with. It’s easy to construct, and easy to access the two fields,
either by pattern matching, or through the two projections, proj1 and proj2. But as
you keep adding components, or fields, it gets harder to keep track of their purpose,
since they are only distinguished by their position in the tuple. Record syntax for
product types lets you assign names to their components. These names are sometimes
called accessors or selectors.
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For example, instead of defining the Pair datatype and then defining functions
proj1 and proj2 as above, we can use the more concise syntax:

data Pair a b = MkPair { proj1 :: a, proj2 :: b }

More typically, since the accessors are thought of as names for fields aswell as functions
for accessing them, one chooses names accordingly:

data Pair a b = MkPair { fst :: a, snd :: b }

Record syntax also allows you to "modify" individual fields. In a functional lan-
guage, thismeans creating a new version of a data structurewith particular fields given
new values. For instance, to increment the first component of a pair, we could define a
function

incrFst :: Pair Int String -> Pair Int String

incrFst p = p { fst = fst p + 1 }

Here we are defining incrFst p, which has the same components as p except for
the fst field, which is set to fst p + 1 (the value of fst p plus one).

Example 2.48. Here’s a more elaborate example of record syntax that we will later use
to implement Solitaire solver in Haskell. The game state is a record with three fields

data Game = Game { founds :: Foundations

, cells :: Cells

, tableau :: Tableau }

The fields can be accessed through their selectors, as in

game :: Game --suppose game is already given

cs = cells game --then we can get its cells this way

We can also implement three setters,a which use the record update syntax

putFounds game fs = game { founds = fs }

putCells game cs = game { cells = cs }

putTableau game ts = game { tableau = ts }

As usual for product types, you can construct a record either using the record syntax
with named fields, or by providing values for all fields in correct order
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newGame :: [Card] -> Game -- we'll implement this in an appendix
newGame deck = Game newFoundations

newCells

(newTableau deck) -- newtableau takes an argument

aOne might also do this “setting” and “getting” using the Haskell lens library.

2.3.4 Sum types

To model finite coproducts in Haskell, there are sum types.
One may construct generalized elements of a coproduct a + b by either constructing

a generalized element of a, then composing with i1, OR by constructing a generalized
element of b, then composingwith i2. In fact, inSet, all global elements of the coproduct
may be constructed in this way. Because of this, the built in syntax in Haskell for
implementing coproducts makes use of the vertical line |, which in computer science
is traditionally associated with OR.

data Coproduct a b = Incl1 a | Incl2 b

Types constructed using | are known as sum types. A more traditional name for
Coproduct in Haskell is simply Either:

data Either a b = Left a | Right b

Here Left and Right correspond to the two injections i1 and i2.

Left :: a -> Either a b

Right :: b -> Either a b

An instance of Either a bmay be created using either data constructor. For example:

x :: Either Int Bool

x = Left 42

y :: Either Int Bool

y = Right True

Thus, in analogy with the coproduct in Set, the terms of type Either Int Bool are
just the terms of type Int together with the terms of type Bool.

Recall from Remark 2.33 that maps out of a coproduct a + b the same as a pair of
maps, one out of a, and one out of b. We define functions out of a sum type by pattern
matching. Here are two possible syntaxes:
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h :: Either a b -> c

h eab = case eab of

Left a -> foo a

Right b -> bar a

h :: Either a b -> c

h (Left a) = foo a

h (Right b) = bar b

Exercise 2.49. What are the types of the functions foo and bar above? ♦

Example 2.50 (Maybe). Note that a constructor in a sum type need not have any type
variables. For example, the Maybe type constructor, defined in the Prelude, has the
following definition:

data Maybe a = Nothing | Just a

Here Nothing is a constructor for a singleton type, with the unique term Nothing.
Thinking of this as a terminal object 1, the type Maybe amodels the coproduct 1 + a.

These data constructors have the type signatures

Nothing :: Maybe a

Just :: a -> Maybe a

Thinking of Nothing as a map from a singleton type, for example (), to Maybe a, these
data constructors correspond to the two inclusions into the coproduct 1 + a.

In effect, Maybe a adds a single, new term, Nothing, to the type a. This is useful for
type safe definitions of operations that are not totally defined. For example, the integer
division function div does not always return an integer: it returns an exception if we
try to divide by zero. However, we can make this function total by sending division by
zero to Nothing:

safeDiv :: Int -> Int -> Maybe Int

safeDiv m n =

if n == 0

then Nothing

else Just (div m n)
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Note that the return type is now Maybe Int instead of Int.

Example 2.51. The set B of Boolean values, has two elements, true and false. As a set,
it is isomorphic to any set with two values, so one way to think of it is simply as the
coproduct 1 + 1.

Similary, the type Bool has two values, True and False, and one way to think of
it is as the coproduct of two singleton types, one with data constructor True, and the
other with data constructor False. The Prelude indeed defines Bool in this way:

data Bool = True | False

Exercise 2.52. Implement Bool2, a type isomorphic to Bool, using Either and the unit
type (). Make sure you define true and false. (Why must these begin with lower
case letters?) ♦

Example 2.53. As promised in Example 2.45, we can now implement the type Suit from
our running cards example. This is simply a sum type with four data constructors:

data Suit = Club | Diamond | Heart | Spade

Using the universal property of the coproduct In analogy with the function tuple
for products, there is a convenient function in Haskell that encapsulates the universal
property of the coproduct (Definition 2.31):

either :: (a->c) -> (b->c) -> (Either a b -> c)

either f g =

\e -> case e of

Left a -> f a

Right b -> g b

The either function has an inverse

unEither :: (Either a b -> c) -> (a->c, b->c)

unEither h = (h . Left, h . Right)

The above style is called point free because it doesn’t use variables; it’s equivalent to the
following

unEither h = (\a -> h (Left a), \b -> h (Right b))
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2.4 Exponentials and function types

So far we’ve seen universal properties in terms of mapping in and mapping out prop-
erties. An important computational consequence, is that these properties describe
bĳections between certain homsets. For example, the product object x × y obeys the
bĳection

C(a , x × y) � C(a , x) × C(a , y),

while the coproduct object x + y obeys the bĳection

C(x + y , a) � C(x , a) × C(y , a).

Indeed, it’s possible to define the product and coproduct as the objects for which these
bĳections exist in a certain so-called ‘natural’ sense.

When a category has products, another important sort of universal object is an
exponential object. The exponential object from x to y is written yx . It obeys the
bĳection

C(x × a , y) � C(a , yx).

In this section we’ll introduce the exponential object, and show how a critically im-
portant sort of types in Haskell, function types, is characterized by the properties of the
exponential.

2.4.1 Interlude: Distributivity

Before wemove on from products and coproducts, it will be fun to point out something
about how they relate. The following is something from high school, but this time we
are doing arithmetic on types.

Recall from Definition 2.37 that a bicartesian category is a category with finite
products and coproducts. The category Set is an example, and we can think of Haskell
as an example too. For anyobjects a , b , c in anybicartesian category, there is amorphism
as follows:

δ : (a × c) + (b × c) → (a + b) × c. (2.54)

The existence of such anmorphism follows from the universal properties of the product
and coproduct. Remember that coproducts really understand maps out of them and
products really understand maps into them, and that’s exactly what we need: a map
out of a coproduct and into a product.

Exercise 2.55. Categorical thinking translates into code. Do you see how to construct
the morphism δ? To check, see if you can implement the corresponding function in
Haskell.

1. Implement functions of the type a -> Either a b and b -> Either a + b
2. Implement functions of the type (a, c) -> (Either a b, c) and
(b, c) -> (Either a b, c).
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3. Implement dist :: Either (a, c) (b, c) -> (Either a b, c). ♦

In high school we learned about the equation (a× c)+ (b× c) � (a+b)× c; we say that
multiplication distributes over addition. The corresponding categorical fact is that in
the category Set, δ is not just a morphism, but an isomorphism. Similarly, in Haskell,
we can construct an inverse as follows

undist :: (Either a b, c) -> Either (a, c) (b, c)

undist (Left a, c) = Left (a, c)

undist (Right b, c) = Right (b, c)

This is not true, however, in an arbitrary bicartesian category. It requires that our
category have one more sort of universal construction: exponential objects.

2.4.2 Exponential objects

Recall our central metaphor: Haskell types are objects in a category, and Haskell
functions are morphisms. We’ve also seen, however, higher order functions, such as
the composition operator, “.”. Higher order functions can take a function as an input,
or give a function as an output. How do we explain these? What are the domain and
codomain types of a higher order function?

To save the situation,weneedanobject in our category that represents allmorphisms
from one given object to another. This works perfectly well in the category Set of sets.
Functions between two sets A, B form a set, the homset Set(A, B), and that set just
already is an object in Set again. This object is denoted BA, for reasons explained by
Exercise 1.14.

In an arbitrary category C, morphisms between two objects also form a set, the
homset C(A, B), but a set is not generally an object in C. If C were to be similar to Set
in the sense that the morphisms A → B pool up into a single object of C, an ‘internal
version’ of the homset, what property would we want this internal homset to have?

The answer to this question is far from obvious, but here’s one critical property of
function sets. For any element f ∈ BA of the function set from A to B, and for any
element a ∈ A, there is an element f (a) ∈ B: we can evaluate f at a. Thus we have a
function

evalA,B : BA × A→ B

Moreover, for any other set X and function e : X × A → B, there is a unique function
e′ : X → BA such that the following diagram commutes:

X × A BA × A

Be

e′×idA

evalA,B (2.56)
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In other words, this diagram states that e(x , a) � evalA,B(e′(x), a) for all x ∈ X and
a ∈ A.

This is what universal constructions are all about. We have to make sure that any
other object X that pretends to be an (A, B)-function object (by providing an evaluation-
like morphism f : a × b → c) is already captured by BA.

Definition 2.57. Let A, B ∈ C be objects in a cartesian category. An object BA, equipped
with a morphism evalA,B : BA × A → B, is called an exponential or function object for
morphisms A to B if it has the following universal property:

• for any object X andmorphism e : X×A→ B, there exists a unique map e′ : X →
BA such that the diagram (2.56) commutes.

Remark 2.58. This is quite an abstract definition! The most important consequence is
that an exponential object BA induces the following bĳection between the following
hom-sets, for any object X:

C(X × A, B) � C(X, BA). (2.59)

The forward map, which we denote

curry : C(X × A, B) → C(X, BA),

is simply the function that takes e to e′, as described by the universal property. Its
inverse,

uncurry : C(X, BA) → C(X × A, B)

sends f : X → BA to evalA,B ◦ ( f × idA) : X × A→ B.
Eq. (2.59) tells you almost everything you need to know about exponential objects.

In fact, it’s almost an alternative definition of ‘exponential object’; one only needs to
add that these bĳections should be ‘natural’ in X. We’ll explain what this means in the
next chapter.

Definition 2.60. A category with a terminal object, and both a product and an expo-
nential defined for every pair of objects is called cartesian closed.

Example 2.61. As discussed, the category Set is a cartesian closed category, with the
exponential object BA the set of functions from A to B.

The function curry acts as follows. First, it accepts a function f : X × A → B, and
returns a function curry( f ) : X → BA. Thus, evaluating curry( f ) at x gives a function
curry( f )(x) : A → B. This function is the function that sends a ∈ A to f (x , a). In
other words, it takes a function of two variables x and a, and returns a function of one
variable, x, that itself returns a function of one variable, a.
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Remark 2.62. This process of taking a function of two variables and turning it into a
higher order function of one variable is known as currying. This process, and hence the
map ‘curry’, is named after the logician Haskell Curry. As you might have guessed,
the programming language Haskell is also named after Haskell Curry. Exponential
objects are a very important part of Haskell!

Cartesian closed categories are important inmodeling programming languages and
the lambda calculus in particular.

Exercise 2.63. Try to define the exponential object by replacing a product with a
coproduct. What goes wrong? Try implementing it in Haskell. ♦

Remark 2.64. We’ve said that the universal property of the exponential object BA in a
cartesian closed category Cmakes it act like an internal version of the set of morphisms
A→ B. But how do you get the morphisms out of it? Then answer is that you use the
terminal object 1 ∈ C.

Consider the sequence of isomorphisms

C(A, B) � C(1 × A, B) � C(1, BA) (2.65)

The first isomorphism comes from the fact that the terminal object is a unit for the
product: 1×A � A (see Example 2.23). This means that given a morphism A→ B, we
may turn it into a morphism from 1×A→ B by precomposing with π2, and conversely
byprecomposingwith its inverse (!A , idA). This gives thefirst isomorphism inEq. (2.65).
The second isomorphism is given by the universal property of the exponential object
(Eq. (2.59)). This gives us the following slogan.

The maps A→ B are the global elements of the exponential object BA.

Exercise 2.66 (Evaluation and pairing). The equation Eq. (2.59) holds for all A, B, and
X. A standard categorical trick is to plug in certain special values; the results often
have special properties.

1. If we plug in X � BA, we get

C(BA × A, B) � C(BA , BA).

Now there’s a special element of the right-hand side, namely id. Applying the
function uncurry : C(BA , BA) → C(BA × A, B) to id, we find that

eval � uncurry(id) : BA × A→ B.

Explain why this is true.
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2. Similarly, if we plug in B � X × A, we get

C(X × A,X × A) � C(X, (X × A)A).

Now there’s a special element of the left-hand side, namely id. This lets us make
the definition

pair B curry(id) : X → (X × A)A .

Show that in the category Set, this function pair maps x ∈ X to the function
pair(x) : A→ X × A defined by sending a ∈ A to (x , a).

♦

2.4.3 Function types, and currying in Haskell

Whenworking inHaskell, the role of the exponential object for functions a to b is played
by the function type a -> b. We’ve already seen this type signature. Understanding
exponential objects means that we can use their insights to make powerful use of
function types.

The properties of exponential objects revolve around the functions curry, uncurry,
eval, and pair. Analogues of curry and uncurry are defined in Prelude, implemented
like so:

curry :: ((a, b) -> c) -> (a -> (b -> c))

curry f = \a -> (\b -> f (a, b))

uncurry :: (a -> (b -> c)) -> ((a, b) -> c)

uncurry h = \(a, b) -> h a b

As evident from these implementations, the essence of currying is a bĳection be-
tween morphisms that take a product as an argument and morphisms that produce a
function as output:

A function of a pair of arguments is equivalent to a function returning a function.

Haskell defaults to curried functions. That is, instead of usingmulti-arity functions,
the standard style inHaskell is towrite single argument functions that return functions.
For example, recall the type signature of (.) from Section 1.4.4:

(.) :: (b -> c) -> (a -> b) -> a -> c

This is a function that accepts a b -> c and returns a function (a -> b) -> a -> c.
(Recall that by Haskell’s parenthesization conventions, the type a -> b -> c is equal
to the parenthesized type a -> (b -> c).)
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An elegant consequence of defaulting to curried functions is that parentheses are
not needed to pass multiple arguments to a function. For example, consider a function
f' of type signature

f' :: (a,b) -> c

To evaluate this at some pair (a,b), we must write f' (a,b). On the other hand,
suppose we use the curried version

f :: a -> b -> c

f = curry f'

Then to evaluate f' (a,b), we may simply write f a b. Since function application
binds strongest, this is read as (f a) b—ie. apply the function f a :: b -> c to b.
This gives the desired result.

The curried-by-default convention is also the reason why we can partially apply
functions: for example, simply write f a for a function f a :: b -> c.

Haskell Note 2.67. In Haskell, the partial application of a binary operator is called a
section. For example, consider the binary operator (+), which takes two numbers and
adds them.

The partial application (+) 2 of (+) to 2 produces a function of one argument that
adds 2 to the argument. For infix operations such as +, we may also write this section
using the syntactic sugar (2+).

Exercise 2.68. Fire up ghci and play around with the operator +.
• What is the type signature of (+)?
• What is the type signature of uncurry (+)?
• What is the type signature of (+) 2?

You’ll notice the symbol Num a => in these type signatures. This says that, in the
following type expression, the type a should be understood as a type of numbers.
We’ll learn in more detail what this means when we discuss type classes in the next
chapter. ♦

Exercise 2.69. From our work in Exercise 2.66, we can immediately define analogues
of eval and pair:

Prelude> eval = uncurry id --Haskell knows you mean id of type b -> c

Prelude> pair = curry id --Haskell knows you mean id of type (b, c)

Prelude> :t eval

(b -> c, b) -> c
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Prelude> :t pair

b -> c -> (b, c)

These two functions are extremely versatile. For example, we saw in Remark 2.58
that to uncurry h : a → cb , we simply compose with evaluation:

a × b
h×idb−−−−→ cb × b

eval−−−→ c. (2.70)

1. Write a function uncurry' in Haskell that behaves the same as the Prelude
function uncurry, but only using eval, following Eq. (2.70).

2. Similarly, write curry' using pair. ♦

Haskell Note 2.71. Weusually see the curried version of the evaluator as an infix operator

($) :: (a -> b) -> a -> b

While this might simply seem like the identity function, because of way precedence
of function application is parsed, this operator is often useful for making code a bit
more readable. It is used between a function name and an expression that evaluates
to its arguments. For instance, instead of writing f (a + b), we can avoid one level of
parentheses and write

f $ a + b

Example 2.72. Recall our discussion of the distributivity of products and coproducts
in Section 2.4.1. Now that we’ve discussed exponential objects and function types in
Haskell, we can use these tools to shed light on our inverse to the canonical map δ from
Eq. (2.54).

We wish to construct a morphism

(a + b) × c → (a × c) + (b × c).

In any cartesian closed category, we can get a morphism of this type by giving a
morphism

a + b →
(
(a × c) + (b × c)

) c

But this is a map out of a coproduct, and coproducts ‘understand’ maps out. This
perspective leads to the following code:

helper :: Either a b -> (c -> Either (a, c) (b, c))

helper (Left a) = \c -> Left (a, c)
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helper (Right b) = \c -> Right (b, c)

undist = uncurry helper

Exercise 2.73. For fun, we can also write the function undist in a point-free style:

undist :: (Either a b, c) -> Either (a, c) (b, c)

undist = uncurry (either (curry Left) (curry Right))

1. Explain what is going on here and why it does the same thing as the implemen-
tation in Example 2.72.

2. Explain in your own words why you need a bicartesian category in order to
express the distributivity morphism from Eq. (2.54).

3. Explain in your own words why you need a bicartesian closed category in order
for that map to be an isomorphism.

Note that these kinds of point-free implementations are notoriously difficult to obtain
and, in general, are difficult to analyze, so they are avoided in practice. ♦

Exercise 2.74. Whenwe get to the continuations monad in ??, we’ll need functions that
involve a bunch of currying and evaluation. As a special case, implement functions of
the following types.

1. r :: a -> ((a -> Int) -> Int)
2. j :: ((((a -> Int) -> Int) -> Int) -> Int) -> ((a -> Int) -> Int).

Hint: use r on the type a -> Int. ♦





Chapter 3

Functors, natural transformations,
and type polymorphism

3.1 Relationships, relationships, relationships

Categories are about arrows from one object to another and how to compose them;
category theory thus emphasizes the viewpoint that arrows—the ways objects relate
to each other—are important. So one might ask: if relationships are so important, how
do we describe how categories relate to each other?

The principle notion of relationship between two categories is called a functor. A
functor froma categoryC to a categoryD consists of function from the objects ofC to the
objects ofD, and a function from that arrows of C to the arrows ofD, that obeys certain
properties. These properties describe what it means to preserve the basic categorical
structure.

So we have categories and functors. But, you might further dare to ask: if rela-
tionships are so important, how do we describe how functors relate to each other? In
fact, in a beautiful example of categorical thinking, this is what led to the discovery
of categories themselves. That is, mathematicians discovered categories not on their
own, and not even by thinking about the way they relate to each other, but by thinking
about how their relationships relate to each other.

Relationships between functors are known as natural transformations. In this chapter,
we’ll formally introduce functors and natural transformations, together with a bunch
of useful examples to help you think about them.

This chapter is largely one that lays the mathematical groundwork for the coming
chapters: we can’t talk about algebras, monads, monoidal categories, or profunctors
without first talking about functors, and for many of these topics natural transfor-
mations are needed too. But beyond looking at these concepts mathematically and
exploring how tnhey can be expressed in Haskell, we’ll sneak some Haskell lessons in
too. Functors and natural transformations will provide a good playbox to explore type

65
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polymorphism in Haskell, in various guises.
A value is polymorphic when it can be given multiple types. For example, the

definition

id :: a -> a

id a = a

writes the identity function once and for all; we need no write a different identity
function for Int and for String. Since it works for all types, as expressed by the type
variable, or parameter, a, we say that id is parametrically polymorphic.

A second type of polymorphism is ad hoc polymorphism. This refers to a name that is
given multiple different implementations, which are deployed depending on the type
of data passed to it. For example, the operation (+) can be used to add two values
which are both of type Int, Integer, Float, amongst other types. We express this
ability using the notion of a type class. The operation (+) has type signature

(+) :: Num a => a -> a -> a

The expression Num a declares that in the following type expression, the type variable a
must be of type class Num. Aswe’ll see, type classes are a useful device for organizing the
data of algebraic structures within Haskell. In particular, we’ll meet the Functor type
class, which will help organize the construction of functors implemented in Haskell.
We’ll also see that the notion of a functor in Haskell is not exactly the same as the
mathematical definition, hence examining the ways that categorical thinking informs
practice.

3.2 Functors

The basic premise of category theory is that you should be able to learn everything
you need to know about X’s by looking at mappings between X’s. Look at the interface
rather than the implementation.

But in some sense, it seems like we’ve been inadvertently breaking this rule when
talking about categories themselves as the X’s. We keep talking about objects and
morphisms—the internal “implementation details” of a category—rather than some
sort of mappings between categories, like the above paragraph says we should. In
this section we introduce an appropriate notion of mapping between categories, called
functors.

3.2.1 Definition

Here’s the slogan:
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A functor from one category to another is a structure-preserving map of objects and
morphisms.

A functor F : C → D takes each object a in C to an object that we denote F a in D.
Similarly, it takes each morphism f : a → b in C to a morphism in D denoted by F f

F f : F a → F b

What does itmean that a functor preserves the structure of a category? The structure
of a category is defined by identitymorphisms and composition, so a functormustmap
identity morphisms to identity morphisms

F ida � idF a

and composition to composition

F ( f ◦ 1) � (F f ) ◦ (F 1).

This gives the following definition.

Definition 3.1. A functor F : C→ D consists of two constituents:
(i) a function F : ObC→ ObD, and
(ii) for every a , b in ObC, a function Fa ,b : C(a , b) → D(F a , F b).

These constituents are subject to two constraints. A functor
(a) Preserves identity: for any a ∈ ObC, the equation F ida � idF a holds.
(b) Preserves composition: for any f : a → b, 1 : b → c, the equation F 1 ◦ F f �

F (1 ◦ f ) holds.

There are a few specialwords for various commonlyused types of functor.

Definition 3.2. Let C and D be categories.
• A contravariant functor C→ D is a functor Cop → D.
• An endofunctor on C is a functor F : C→ C.
• A bifunctor on C is a functor C × C→ D.
• A profunctor on C is a functor C × Cop → Set.

Exercise 3.3. Just to play around with the idea and warm up a bit, write down all func-
tors between the two-object categories 2, Disc(2), and I (as defined in Examples 1.35,
1.36, and 1.41). How many did you find? ♦

3.2.2 Examples of functors

In Section 1.3.3 we gave a wide variety of examples of categories, including discrete
categories, monoids, preorders, and the key example Set. The goal was to demonstrate
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the flexibility of the concept, and provide a library of tools to test your understanding
against. In Haskell, we’ll mostly be interested in functors that behave like endofunctors
on Set. But we’ll again begin with a wide variety of examples, all of which are very
useful!

Monoid homomorphisms

Recall that a category with one object is called a monoid (Definition 1.46). A functor
between monoids is called a monoid homomorphism. Let’s explore this idea.

Let M and N be categories, both with a single object called ∗. This means that they
are monoids. Let’s use the notation (M, e ,�) and (N, o , •) for the monoids M and N

respectively. Recall that M � M(∗, ∗), e � id∗, and � is composition in M, and similarly
for N.

A functor F : M→ N consists of:
(i) A function F : ObM � {∗} → ObN � {∗}. Note there is only one such function –

it sends ∗ to ∗ – and so we can ignore this part of the definition.
(ii) For every pair of objects (a , b) of M, a function Fa ,b : M(a , b) → N(Fa , Fb).

Since there is only one object ∗ of M, this means we only need one function:
F∗,∗ : M(∗, ∗) → N(∗, ∗).

So the data of a functor is simply a function, let’s just call it f , of type f : M → N .
This function must obey:

(a) Preserves identities: f (e) � o
(b) Preserves composition: for all m ,m′ ∈ M, we have f (m �m′) � f (m) • f (m′).
Monoid homomorphisms are very common.

Example 3.4. Consider the monoids Z× � (Z, 1,×) and BAND � (B, true,AND). Let
is_odd : Z→ B be the function that sends odd numbers to true and even numbers to
false. This is a monoid homomorphism. It preserves identities because 1 is odd, and
it preserves composition because the product of any two odd numbers is odd, but the
product of anything with an even number is even.

Exercise 3.5. Is the function is_even : Z → B that maps even numbers to true and
odd numbers to false a monoid homomorphism, from Z× to BAND? If so, prove it. If
not, can you find other monoid operations on the sets Z and B that make is_even a
monoid homomorphism? ♦

Exercise 3.6. Consider the monoids R+ � (R, 0,+) and R× � (R, 1,×).
1. Is the function x 7→ 3x a monoid homomorphism R+ → R×? Prove it or explain

why not.
2. Is the function x 7→ ex a monoid homomorphism R+ → R×? Prove it or explain
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why not.
3. Can you think of another monoid homomorphism R+ → R×? ♦

Monotone maps

Recall that a categorywith atmost onemorphism between any two objects is a preorder
(Definition 1.51). A functor between preorders is called a monotone map.

Let P andQ be preorders, considered as categories. We’ll write P � ObP, Q � ObQ,
and p ≤ p′ if there is a morphism between objects p and p′ in either category; as usual,
we won’t bother giving the morphism a name since it’s unique. A functor F : P → Q

consists of
(i) A function F : P → Q.
(ii) For every pair (p , p′) in P a function Fp ,p′ : P(p , p′) → Q(Fp , Fp′).

Since P and Q are preorders, P(p , p′) and Q(Fp , Fp′)many contain at most one element.
This means that if a function Fp ,p′ exists, it’s unique. So the key is to ask: when does
such a function exist? The only problem arises when P(p , p′) contains an element, but
Q(Fp , Fp′) doesn’t. That is, if p ≤ p′, then to define a functor, we must have Fp ≤ Fp′.
We thus say that F must preserve the order.

Of course, for F to be a functor, it must also preserve identities and composition.
We’ll leave it to you to explain why.

Exercise 3.7. Check that any function F : P → Q that preserves the order also preserves
identities and composition. ♦

Example 3.8. Let Items be a preorder of items ordered by quality, and R≤ be the usual
preorder on real numbers. Then the function price : Items → R≤ that sends an item
to its price should be a monotone map: if item a is better quality than item b, it should
be worth more money.

Exercise 3.9 (Upper sets). LetP � (P, ≤)be apreorder. Anupper set (or anupwards-closed
set) in P is a subset S ⊆ P such that if p ∈ S and p ≤ p′, then p′ ∈ S.

Let B≤ � (B, ≤) be the usual preorder on the Booleans, with true > false. In this
exercise we’ll show that a monotone map F : P→ B≤ is the same as an upper set.

1. Given a function F : P → B, write SF for the subset of P consisting of all elements
that are sent to true. Show that SF is an upper set.

2. Suppose we have an upper set S of (P, ≥). Let FS : P → B be the function sending
p to true if p ∈ S, and to false otherwise. Show that FS is a monotone map.

♦
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Exercise 3.10. LetZ≥ be the usual preorder on the integers. Are the following functions
monotone?

1. f (n) � n
2. 1(n) � 2n
3. h(n) � n + 2
4. i(n) � n2

5. j(n) � 0
♦

Some standard constructions

The following examples are a bit more abstract, but they work for almost any category.
It’s often helpful to have them on hand.

Example 3.11 (The identity functor). Given any category C, we may define the identity
functor idC : C → C. For the functor idC : ObC → ObC, we simply pick the identity
mapping; so on objects, this functor sends each object A to itself. The same is true for
morphisms: the identity functor idC sends each morphism to itself. In particular, this
choice of mappings preserves composition and identity in C; see Exercise 3.12.

Exercise 3.12. Check that idC really does preserve identities and composition. ♦

Example 3.13 (Constant functors). Let C and D be categories. Given any object d in D,
we can define the constant functor Kd : C→ D on d. This functor sends every object of C
to d ∈ ObD, and everymorphism of C to the identity morphism on d.

For example, we could talk about the constant functor K2 : Set→ N, where N is the
preorder of natural numbers. This maps every set to the natural number 2. It’s a bit of
a strange idea, but it’s a functor!

Exercise 3.14. Show that any constant functor Kd : C→ D obeys the two functor laws:
preservation of composition and preservation of identities. ♦

Example 3.15 (Products give functors). Let C be a cartesian category (ie. it has finite
products). Then given any object a, we can define a functor − × a : C → C. This
functor sends any object c to c × a, and any morphism f : c → d to the morphism
f × ida : c × a → d × a.

For example, there is a functor − × Z : Set→ Set that sends any set X to X × Z.
We can also define a bifunctor −×− : C×C→ C. This functor maps a pair of objects
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(c , d) in C (that is, an single object in the product category C×C) to the object c × d in C,
and a morphism ( f , 1) : (c , d) → (c′, d′) in C × C to the morphism f × 1 : c× → c′ × d′

in C.

3.2.3 Functors and shapes

Remember our discussion about interpreting functions f : a → b as modeling set a
inside set b? We talked about a singleton set as a shape that embodies the idea of an
element: its models in b are the elements of b. Functors also can be understood as
modelling shapes, but this time shapes of categories inside other categories.

The categorical analogue of a singleton set is the discrete category 1 on a one element
set. We first met this category in Example 1.33, and saw it was part of the family of
discrete categories in Example 1.35. The category 1 has one object and no arrows except
for the identity:

1 � 1

id1

In analogy with the singleton set, a functor from 1 to any category C picks out
an object in C. As such, it is a walking object. It has no other structure but what’s
necessary to illustrate the idea of an object. It’s like when we say that somebody is a
walking encyclopedia of Star Wars trivia. What we mean is that this person has no
other distinguishing qualities besides being an expert on Star Wars. This is usually an
unfair description of a living and breathing person, but in category theory we often
encounter such patterns that have just the right set of features to embody a particular
idea and literally nothing else.

Exercise 3.16. Let C be an arbitrary category.
1. Show that there is a one-to-one correspondence between objects of C and functors

1→ C.
2. Show that there is a unique functor C→ 1. ♦

Rather than interpreting a functor F : C→ D as amodel of C inD, we could interpret
it as a grouping or sorting of objects (and morphisms) in C according toD. That is, for
every object d ∈ D one could consider all the objects in C that are sent to it by F and all
the morphisms in C that are sent to idd by F. Let’s denote this collection of objects and
morphisms by F−1(d).

Exercise 3.17. Let F : C→ D be a functor and let d ∈ ObD be an object. Show that the
objects and morphisms in F−1(d) form a category. ♦

Continuingwith discrete categories, there is also a categoryDisc(2)with two objects
Ob Disc(2) � {1, 2} and two identity morphisms id1 and id2. This is the categorical
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equivalent of a two-element set. A functor from Disc(2) to any category C works like a
selection of two objects F 1 and F2 in the target, just like a function from a two-element
set was selecting a pair of elements. In fact, this analogy can be made rigorous using
the notion of adjunction; see ??.

Themapping out property with Disc(2) as the target is also interesting. It partitions
objects in the source category into two groups, the ones mapped to 1 and the ones
mapped to 2. But now we have to think about the arrows. All morphisms within
the first group must be mapped into id1 and all morphisms within the second group
must go into id2. But if there are any morphisms between the two groups, they have
nowhere to go. So every functor from C to Disc(2), if it exists, must partition C into
two disconnected parts (one of these parts may be empty, though).

Things get even more interesting when our tiny category has arrows. For instance,
we can add a morphism ar : 1→ 2 to the two-object category, to arrive at the category
2 (see Example 1.36).

2 � 1 2id1 ar id2

A functor from 2 to C picks out a pair of objects in C together with an arrow between
them, namely F(ar). This is why 2 is often called a walking arrow.

Exercise 3.18. Let C be an arbitrary category. Show that there is a one-to-one corre-
spondence between morphisms of C and functors 2→ C. ♦

Mappings out of C into 2 also partition its objects into two groups. But this time
any morphisms in C that go from the first group to the second are mapped into our
arrow ar. There is still no room for morphisms going back from the second group to
the first: they have nowhere to go in 2.

Exercise 3.19. How many functors are there from Set to 2? Write them down. ♦

Going further, we can add another arrow to our two-object category, going in the
opposite direction. The result is the walking isomorphism I (Example 1.41):

I � 1 2id1

f

f −1
id2

Any functor from I to an arbitrary category C picks out an isomorphism in C, as we
now check.

Exercise 3.20. Given a category C, show that isomorphisms in C are in one-to-one
correspondence with functors I → C. Hint: A functor preserves composition and
identity. ♦



3.2. FUNCTORS 73

Exercise 3.21. What kind of sorting does the mapping out of C to the walking isomor-
phism category define? ♦

If, rather than arrows in either direction, we have two arrows in the same direction,
the resulting tiny category serves as a model for graphs.

Gr �
Edge
• Vert•

src

tgt
(3.22)

Consider a functor G : Gr → Set; we will see that G represents a graph (recall
Definition 1.43). First, it chooses two sets, G(Edge) and G(Vert) which we will call the
set of edges and the set of vertices in G. Second, it chooses two functions src and tgt,
each of which sends every edge e ∈ G(Edge) to a vertex: the source vertex G(src)(e)
and the target vertex G(tgt)(e) of e.

Here we depict an example of such a functor G

v• w•

x•
y
•

f

1

e

ih

j

G(Edge) G(src) G(tgt)
e w v
f v w
1 w v
h w y
i w y
j x x

G(Vert)
v
w
x
y

Wehavewritten the elements of the sets G(Edge) and G(Vert) in the first columns of the
respective tables. The results of applying functions G(src),G(tgt) : G(Edge) → G(Vert)
to each edge e ∈ G(Edge) are written in the respective columns. The whole data
structure that G : Gr→ Set is thus represented in these two tables, but can be drawn as
a graph, as shown. Elements of G(Vert) are drawn as vertices and elements of G(Edge)
are drawn as arrows connecting their source to their target.

As you can see, category theory puts at our disposal a much larger variety of
“shapes” from which to choose. Functors from these shapes let us describe interesting
patterns in target categories. This is a very useful and productive intuition. When we
say that a morphism f : a → b picks out a pattern of shape a in b, we are using this
intuition. In fact, as we’ve seen earlier, functors aremorphisms in the category Cat.

Now that you know what a category is and what a functor is, you can further
bootstrap your intuitions. Instead of thinking of objects as secretly being sets or bags
of dots, think of objects as categories, with arrows between dots. Instead of thinking
of morphisms as secretly being functions, think of them as being functors between
categories. Then the whole idea of shapes makes much more sense. The only shape
that a set can describe is a bag of dots. A function lets you see one bag of dots inside
another bag of dots. But a functor lets you connect the dots, which makes it much
closer to what we view as shapes in real life.

Similarly, categories as targets of functors provide “sorting hats”. This viewpoint
will not be as useful to us, but it can still be interesting to consider.
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3.2.4 The category of categories

We have seen that for every category C, there is an identity functor idC. This name
suggests identity functors are the identities for some notion of composition, and indeed
this is the case: there is a natural notion of composition for functors.

Definition 3.23 (Composition of functors). Suppose we have functors F : C→ D, and
G : D → E. We can define a new functor G ◦ F : C → E, as follows. First, we need to
give a function ObC→ ObE. This is given by composing our functions on objects for
F and G. That is, given c ∈ ObC, we send it to G(F c). Similarly, given a morphism
f : c → c′ in C, we send it to G(F f ), which is a morphism G(F c) → G(F c′) in E.

Exercise 3.24. Show that if F : C→ D and G : D→ E are functors, then so is G ◦ F, i.e.
that it preserves identities and compositions. ♦

Definition 3.25. The category of categories, denoted Cat, has categories as objects, and
functors between them as morphisms. The identity functors are the identities, and
composition of functors is the composition rule.

Exercise 3.26. Show that the category of categories is indeed a category, i.e. that it
satisfies the unital laws and the associative law, as per Definition 1.30. ♦

Exercise 3.27. In Example 1.56 we defined the product of two categories. Show that
this category has the universal property of the product in the category Cat (as in
Definition 2.19). That is, show that the product category really is a product. ♦

3.3 Type classes

Before we talk about howwe can use functors to structure code, it’s useful to introduce
one more feature of Haskell: type classes.

3.3.1 Polymorphism in Haskell

We said earlier that every Haskell term is required to have a type. But you may have
noticed that some terms appear to have more than one type: they are what we call
polymorphic. For example, consider the identity function id = \x -> x. This works
for an input x of any type; wemay have id 3 :: Int or id "brown bear" :: String.
We thus say id is parametrically polymorphic: its type signature id :: a -> a contains
a type variable a, and it has a uniform definition that works for all choices of this type.
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Yet this sort of polymorphism does not explain all termswith ambiguous types. For
example, what is the type of the equality operator (==)? We can pass it 2 :: Int and
3 :: Int, and itwill returnFalse. Sohere its typeappears tobe(==) :: Int -> Int -> Bool.
But we can also pass it "love" :: String twice, and it will return True. So perhaps it
is parametrically polymorphic, with type (==) :: a -> a -> Bool?

Unfortunately, not: not all types support a notion of equality, and so a uniform
definition of (==) cannot be given. One example is function types. For example, if we
define

f,g :: Int -> Int

f x = 2*(x + 1)

g x = 2*x + 2

then f == g results in an error.1 Instead, the expression (==) is overloaded: it refers to
multiple definitions.

In general, it is not possible to overload names, even for different type signatures.
For example, if you try to define

f :: Int -> Int -> Bool

and

f :: String -> String -> Bool

the compiler will protest that you are trying to implement the same function twice.
But overloading is a very useful feature, and most languages implement some

version of it. The problem is that the compiler has to figure out, at runtime, which
version it’s supposed to use. This is called name resolution, and some languages, like
C++, have Byzantine rules for name resolution. In Haskell, name resolution is handled
through the type system: as long as different definitions have different types, type
inference can figure out which definition to use. The result is a form of polymorphism
called ad hoc polymorphism. Ad hoc polymorphism is handled using type classes.

3.3.2 Defining type classes and instances

The function (==) is ad hoc polymorphic. Its type signature is

(==) :: Eq a => a -> a -> Bool

1While it may seem like these two functions are equal in the sense that f x and g x are equal for
all inputs, this is not a property that can be verified in finite time for all possible terms Int -> Int, and
hence is not practical for implementation.
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Here Eq is a type class, and the type constraint Eq a => indicates that in the following
type expression, the type variable a ranges over types that are instances of the type
class Eq.

Haskell Note 3.28. More generally, a type class consists of a collection of methods that
can be employed when working with a type that is an instance of the class. To define a
type class, we use the keyword class. A type class definition has the following form:

class ClassName typeVariable where

methods :: MethodTypes

defaultDefinitions

Example 3.29. For example, the Eq class from Prelude is defined as follows:

class Eq a where

(==), (/=) :: a -> a -> Bool

x /= y = not (x == y)

x == y = not (x /= y)

Here this says that the class Eq contains twomethods, called (==) and (/=). Moreover,
if no separate definition of (/=) is given, then it defaults to having the definition
x /= y = not (x == y). Similarly, if no separate definition of (==) is given, it defaults
to the definition x == y = not (x /= y). Note that to create an instance of Eq though,
we must at least supply a definition of either (==) or (/=).

Type classes provide names for methods. To make a type an instance of a class, we
must give definitions for these methods.

Haskell Note 3.30. A type instance declaration has the following form:

instance ClassName typeVariable where

methodDefinitions

Example 3.31. Consider the typedata Suit = Club | Diamond | Heart | Spade from
Example 2.53. We may make this into an instance of the type class Eq as follows:

instance Eq Suit where
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Club == Club = True

Diamond == Diamond = True

Heart == Heart = True

Spade == Spade = True

_ == _ = False

This defines a function (==) for the type Suit. Note that since the type class contains a
default definition of (/=), our instance declaration also defines this function for Suit.
For example, we have Club /= Diamond = True.

Here are some other type classes that are defined in Prelude:

Example 3.32. The Show class provides a single method show, which allows terms to be
converted to strings. This can be used for, among other things, defining a way to print
terms of a given type.

class Show a where

show :: a -> String

Note that the default definitions are optional: we give no default definition for the
function show.

Example 3.33. The numeric class Num gives basic numeric operations to a type, like
addition, negation, and sign.

class Num a where

(+), (-), (*) :: a -> a -> a

negate, abs, signum :: a -> a

In particular, the types Int, Integer, and Float are all instances of Num, which allows
us to use the (+) operator for data of all these types.

Exercise 3.34. TheGaussian integers are the complexnumbers of the form a+bi, where a
and b are integers. Addition, subtraction, multiplication, negation, and absolute value,
and sign are defined for the Gaussian integers as they are for all complex numbers.
(The sign of a + bi is equal to the sign of a.) Make the type (Int,Int) an instance of
the Num in a way that models the Gaussian integers. ♦
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Example 3.35. The Ord class is used for types of ordered data. Note the class constraint
Eq a => in the beginning of this definition. This says that any instance of Ord must
also be an instance of Eq.

class Eq a => Ord a where

(<), (<=), (>), (>=) :: a -> a -> Bool

min, max :: a -> a -> a

min x y | x <= y = x

| otherwise = y

max x y | x <= y = y

| otherwise = x

Haskell Note 3.36 (Algebraic structures as typeclasses). Type classes give structure for
how to interact with terms of a given type. For example, since the type Int is an
instance of the type class Num, we know that we may interact with terms of type Int
as numerals, adding them, subtracting them, and so on. Similarly, since String is an
instance of Eq, we know that we can ask whether two strings are equal or not. But you
might have noticed that class definitions only contain type signatures.

As we have seen in many definitions in this book, including definitions of monoid,
preorder, and category, an algebraic structure consists of some data subject to some
laws.

For example, there are certain properties one might expect a function called (==) to
have. These include
(a) Reflexivity: for all values x, the expression x == x is True.
(b) Symmetry: if x == y then y == x.
(c) Transitivity: if x == y and y == z, then x == z.
(d) Preservationby functions: iff :: Eq a, Eq b => a -> b, x, y :: a, andx == y,

then f x == f y.
Nowhere in the class definition of Eq doe it states that (==)must have these properties.

Indeed, one is perfectly free to construct an instance of Eq that obeys none of these
properties: as long as the type constraints are obeyed, the program will compile. But
this would not be a good way to use Haskell to express our algebraic ideas.

Implicit in the names Eq, ==, and /= is the claim that it is productive for the us to
think of these instances of the type class as behaving like equality, just as implicit in
the name Int is the claim that it’s productive to think of terms of this type as integers.
Through the type system, the compiler handles some basic sanity checking regarding
this claim. But it is ultimately the responsibility of the programmer to ensure this
abstraction is reliable.
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We’ll be using type classes to helpmodel structures from category theory, including
functors, profunctors, monads and many more. In doing so, we’ll follow the Haskell
convention of simply defining the types of the key pieces of data. The laws these data
must obey are not specified in code, but often written in the documentation. This
guides usage of the type class. The more closely these structures obey these laws, the
more reliable categorical insights are for reasoning about them, and so the more useful
category theory is for writing code.

Exercise 3.37. Make Suit an instance of Eq in a way in which none of the properties of
reflexivity, symmetry, and transitivity hold. ♦

Exercise 3.38. Define a class Monoid, capturing the data of Definition 1.46. Make
instances for the monoids (Z, 0,+) and (B, true,AND). ♦

3.4 Functors in Haskell

Let’s return to our centralmetaphor: the types and functions ofHaskell forma category.
Since our path to realizing categorical ideas in code begins with this metaphor, in
Haskell the word functor usually refers to an endofunctor on this category: a functor
from it, to itself. So aHaskell functormaps types to types and functions to functions. In
this sectionwe’ll introduce theHaskell type class Functor, and discuss some important
examples.

3.4.1 The Functor type class

A Haskell functor maps types to types, and functions to functions. To begin with, this
means that given a type, a Haskell functor returns another type. We’ve already met a
way of doing this: polymorphic type constructors. For example, the type constructor
Maybe accepts a type a and returns the type Maybe a, which is like a but with an extra
term, Nothing.

So a polymorphic type constructor can serve as the on-objects part of a functor;
what about the on-morphisms part? When we talk about what a functor F : C → C

does on morphisms, we might say that it “lifts f to F( f )”. If we were to extend Maybe
to a functor, this says that if we have a function f :: a -> b, our functor should give a
new function f' :: Maybe a -> Maybe b. Oneway of doing this is with the following
definition:

f' :: Maybe a -> Maybe b

f' Nothing = Nothing

f' (Just a) = Just (f a)
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Notice that we can make this f' construction for any function f. This means that we
have a higher-order function

fmap :: (a -> b) -> Maybe a -> Maybe b

fmap f Nothing = Nothing

fmap f (Just a) = Just (f a)

Thinking of Maybe as our functor F : C→ C, the type constructor plays the role of the
on-objects map F : ObC→ ObC, which the polymorphic function fmap plays the role
of the on-morphisms maps Fa ,b : C(a , b) → C(Fa , Fb).

The Functor type class, defined in Prelude, captures the general pattern:

class Functor f where

fmap :: (a -> b) -> f a -> f b

So a polymorphic type constructor becomes an instance ofwhatHaskell calls a Functor
when it is equippedwith the additional function, fmap, that tells us how to lift functions.

Example 3.39 (Maybe). When one knows that a certain function f : a → b is partial—
that not all inputs should return an output—it is often useful to turn it into a total
function f ′ that has the same output as f on inputs where f is defined, and outputs a
special value when f undefined.

This is done with the Maybe functor that we have just discussed. Here’s the full
definition

data Maybe a = Nothing | Just a

instance Functor Maybe where

fmap f Nothing = Nothing

fmap f (Just a) = Just (f a)

Remark 3.40. When dealing with endofunctors, it’s important to keep in mind the
difference between functors and morphisms. A functor acts on objects—it says: give
me one object, and I’ll give you another (and similarly for morphisms). A morphism is
an arrow between two objects: the source and the target. It probes the internal structure
of an object.

An endofunctor in Set, for instance, could assign a set of oranges to a set of apples.
But it would not map individual apples to individual oranges. That’s what a function
between those sets would do.

For example, there is a functor Set→ Set sending every set X to �; it sends every
morphism to the identitymorphismon�. But there is never a function froman arbitrary
set X to � (unless X itself is empty).
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3.4.2 First examples of functors in Haskell

Let’s give a few more elementary instances of the Functor type class.

Example 3.41 (Reader functor). Here is a functor ReadInt that takes a type a and returns
the function type Int -> a:

data ReadInt a = MakeReadInt (Int -> a)

instance Functor ReadInt where

fmap f (MakeReadInt g) = MakeReadInt (f . g)

Note here that fmap has type

fmap :: (a -> b) -> (ReadInt a -> ReadInt b)

There was nothing special about the choice of type Int in constructing this functor;
wemay replace it with any type r. We call any functor constructed in this way a Reader
functor, as it turns any type a into a new type that reads in a value of r to create a value
of a. We shall see later that these Reader functors can be extended to what are called
monads, which provide further methods for handling this reading process.

Exercise 3.42. Give each of the following type constructors the structure of a functor
by saying how to lift functions. That is, implement the following:

1. mapDoub :: (a -> b) -> (Double a -> Double b)
2. mapWStr :: (a -> b) -> (WString a -> WString b)
3. mapUnit :: (a -> b) -> (Unit a -> Unit b) ♦

It’s also useful to have the more mathematical examples

Example 3.43 (Identity functor). In the case of Id, given a function a -> b we have to
define a function Id a -> Id b. This mapping is accomplished using a higher-order
function, that is a function that takes a function and returns a function:

mapId :: (a -> b) -> (Id a -> Id b)

Here are various implementation of lifting for the functor Id:

mapId1 f = \i -> MkId (f (unId i))

mapId2 f i = MkId (f (unId i))

mapId3 f (MkId x) = MkId (f x)
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In the first, we use unId to retrieve the value with which the argument i was con-
structed, apply the function f to it, and construct a new value of the type Id b using
MkId. In the second, we simplify the syntax by treating mapId as a function of two
arguments. And in the third, we pattern match the argument directly.

The last version, mapId3 is generally preferred because it exposes a nice sort of
symmetry or perhaps commutativity: the f seems to “move past” the MkId.

Example 3.44 (Constant functor). We can repeat the same procedure for the constant
functor:

CInt � Λa. Int

We first write down the polymorphic type constructor:

data CInt a = MkC Int

This time, though, the data constructor doesn’t use the a at all; for example CInt 42 is
a term of type CInt a for any a.

Strictly speaking, Cint is not a constant functor, since every type a is mapped into
a different type CInt a. However, all these types are isomorphic, as we’ll see in Exer-
cise 3.45; in fact they are “naturally isomorphic” in the sense of natural transformations,
which we’ll come to later.

Exercise 3.45. Here we implement the two functions that witness the isomorphism
between Int and CInt a.

1. Specify a function of type CInt a -> Int.
2. Specify a function of type Int -> CInt a. ♦

Exercise 3.46. Show that the polymorphic type constructor CInt can be given the
structure of a functor by saying how it lifts morphisms. That is, provide a Haskell
function mapCInt of the type (a -> b) -> (CInt a -> CInt b). ♦

Example 3.47 (Are Haskell functors always functors?). Someone might ask: “if I define
an instance of the Functor class inHaskell, is it always a functor in the sense of category
theory?” The person is asking whether the functor laws—preservation of identity and
composition—hold. The answer is no.

We start with an example functor and then give a non-example that’s quite similar.
So here’s a good functor:

data Pair a = MkPair (a, a)
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instance Functor Pair where

fmap f MkPair (a1, a2) = MkPair (f a1, f a2)

This says that for any f : A→ B, we can take a pair of A’s and turn it into a pair of B’s,
e.g. if we start with isEven :: Int -> Bool and apply fmap isEven (3,4), we get
(False, True). This is a functor, because it preserves the identity and composition,
e.g. fmap id (3,4) gives (3,4).

Here’s an instance of the Haskell type class Functor that does not correspond to
any functor Set→ Set.

data Pair a = MkPair (a, a)

instance Functor Pair where

fmap f MkPair (a1, a2) = MkPair (f a2, f a1) --swap!!

Thenfmap id (3,4) returns(4,3), sofmap id is notid. It does not preserve identities.

Exercise 3.48. For each of the following type constructors, define two versions of fmap,
one of which has a corresponding functor Set→ Set, and one of which does not.

1. data WithString a = WithStr (a, String)
2. data ConstStr a = ConstStr String
3. data List a = Nil | Cons (a, List a) ♦

3.4.3 Bifunctors

If every pair of objects in a category C has a product, we can define a functor C×C→ C.
One way to think of this is as a functor in two arguments; hence it is sometimes called
a bifunctor.

The library Data.Bifunctor contains the following typeclass:

class Bifunctor f where

bimap :: (a -> a') -> (b -> b') -> (f a b -> f a' b')

It works on type constructors f that requires two type arguments, and is an analogue
of fmap that asks for two functions rather than one, but still returns one function
f a b -> f a' b'.

Let’s see how products–pairs—define a bifunctor in Haskell. On objects, we see
that the product takes two types a and b and returns a single type (a,b); this is the
type constructor. To inform the compiler that this type constructor as a bifunctor, we
provide bimap as follows:
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instance Bifunctor (,) where

bimap f g = \p -> (f (fst p), g (snd p))

or, using pattern matching:

bimap f g (a, b) = (f a, g b)

a × b

a a′ × b′ b

a′ b′

π1
h

π2

f
π1 π2

1

Figure 3.1: Functoriality of the product: h � (( f ◦ π1), (1 ◦ π2))

In fact, products give more structure: not only do they form a bifunctor, but this
bifunctor gives what is known as a symmetric monoidal structure on the category. We
won’t say exactly what this means, but what is important for programming in Haskell,
is that the universal property of the product given four isomorphisms.

These are
1. Symmetry

a × b

b × a

b a

π2 π1

γ

π1 π2

2. Associativity

a × (b × c)

(a × b) × c b × c

a × b c

ida×π1

π2α

π1 π2
π2
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3, 4. Two unit isomorphisms

a

1 × a

1 a

! ida
λ−1

π1 π2

a

a × 1

a 1

ida !
ρ−1

π1 π2

Exercise 3.49. Implement functions of the following type signatures:
1. swap :: (a,b) -> (b,a)
2. assoc :: (a,(b,c)) -> ((a,b),c)
3. unitl :: a -> ((),a)
4. unitr :: a -> (a,())
5. double :: a -> (a,a) -- bonus!

♦

Because of associativity, nested pairs can be simplified to tuples of multiple types.
For instance, because the type (a, (b, c)) is isomorphic to ((a, b), c), we can
without ambiguity use a tuple (a, b, c) of three types. As in Exercise 2.29 we could
also define a triple products (or any finite product, for that matter) using a universal
construction:

d

a × b × c

a b c

f 1
hh

π1 π2

π3

We could do this for n-many types, for any n ∈ N. When n � 0 we see the empty
tuple; hence the notation ().

To show that the coproduct defines a bifunctor, we must implement a function of
the following type signature:

bimap :: (a -> a') -> (b -> b') -> (Either a b -> Either a' b')

We can look at it as a mapping out of a comproduct, so we can use the universality of
the following diagram with f : a → a′ and 1 : b → b′
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a b

a′ a + b b′

a′ + b′

i1
f

i2
1

i1
h i2

Reading this diagram, we get

instance Bifunctor Either where

bimap f g = either (Left . f) (Right . g)

Or, in pattern matching syntax:

instance Bifunctor Either where

bimap f g (Left a) = Left (f a)

bimap f g (Right b) = Right (g b)

In analogy with Exercise 3.49 we can define symmetry, associator, and unitor iso-
morphisms for the coproduct.

Exercise 3.50. Implement functions of the following type signatures:
1. swap :: Either a b -> Either b a
2. assoc :: Either a (Either b c) -> Either (Either a b) c)
3. unitl :: Either Void a -> a
4. unitr :: Either a Void -> a
5. double :: Either a a -> a -- bonus!

♦

3.4.4 A first glance at profunctors

We’ve seen before that both the product and the coproduct are bifunctors. Let’s try to
establish the functoriality of the exponential. First, let’s check if cb is functorial in c.
To that end, let’s assume that we have a morphism 1 : c1 → c2 and try to lift it to the
morphism cb

1 → cb
2 .

To get such a morphism, it suffices by currying to obtain a morphism cb
1 × b → c2,

which we obtain as the following composite

cb
1 × b

eval−−−→ c1
1

−→ c2

However, if we tried to do the same trick to establish functoriality of cb in b, we
would fail. The reason is that the exponential is contravariant in b; it varies backwards.
It cannot lift a morphism b1 → b2, but it can lift a morphism going in the opposite
direction: it can lift a morphism 1 : b2 → b1 to obtain amorphism cb1 → cb2 .
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Exercise 3.51.
1. Implement a function of the type

(c1 -> c2) -> (b -> c1) -> (b -> c2)

2. Implement a function of the type

(b1 -> b2) -> (b2 -> c) -> (b1 -> c)

♦

So the exponential cb is covariant in c and contravariant in b. Said categorically, if
the exponential object is defined for every pair of objects in, we have a functor

−− : Cop × C→ C.

Recall that the opposite category Cop has the same objects as the original one, but all
the arrows are reversed. This functor lifts a single morphism in Cop × C, which is a
pair of morphisms from C, the first going in the opposite direction.

The functions from Exercise 3.51 can thus be combined into one function

dimap :: (a' -> a) -> (b -> b') -> ((a -> b) -> (a' -> b'))

dimap g' g = \h -> g . h . g'

Just like we had a type class for bifunctors (functors out of C×C), there is a typeclass
for bivariant functors (functors out of Cop × C) in Haskell

class Profunctor p where

dimap :: (a' -> a) -> (b -> b') -> (p a b -> p a' b')

We have just shown that the infix operator -> is an instance of Profunctor

instance Profunctor (->) where

dimap g' g h = g . h . g'

As our friend John Baez once said, profunctors are functors for pro’s. For example,
they generalize functors, as we’ll now see.

Example 3.52. Suppose that F : C→ C is a functor. There is a related profunctor called
the companion of F, denoted F̂. It is implemented as follows:

data Companion f a b = Companion ((f a) -> b)
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instance Functor f => Profunctor (Companion f) where

dimap g' g (Companion h) = Companion $ g . h . (fmap g')

We will see profunctors again later.

3.5 Natural transformations

When there is more than one functor between two categories, wemay ask the question:
How are these models related to each other? We need to define mappings between the
images of two functors.

A natural transformation is a structure preserving mapping between functors.

3.5.1 Definition

A natural transformation α is a map between parallel functors; you can draw it like
this:

C D

F

G

⇓α

But functors are themselves mappings; what’s a mapping between mappings? The
secret is that natural transformations really do all their work in the target category D,
though they take their cues from C. For every object c in C we get two objects, Fc and
Gc in D. The natural transformation α picks a morphism from Fc to Gc. This way
we define, for every object c, the component αc of the natural transformation. If, for
some c, there are no morphisms in D between Fc and Gc, there can can be no natural
transformation between F and G. The two functors are unrelated.

If functors were only mapping objects to objects, we would be done. But functors
also map morphisms. Every morphism f in C is mapped to two morphisms in D:
F f and G f . These morphisms can be composed with the components of the natural
transformation in two different ways. Naturality means that these two compositions
should be equal.

Definition 3.53 (Natural transformation). Let C andD be categories, and let F,G : C→
D be functors. A natural transformation α from C to D, denoted α : F ⇒ G, consists
of a morphism αc : F(c) → G(c) for each c ∈ Ob(C), called the c-component. These
components are subject to a condition called naturality. Namely, for each f : c1 → c2 in
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C the following square needs to commute in D:

F(c1) F(c2)

G(c1) G(c2)

F( f )

αc1 αc2

G( f )

(3.54)

3.5.2 Natural transformations in Haskell

A natural transformation is a family of morphisms, one per object. Haskell will never
check the naturality condition Eq. (3.54), so to implement a natural transformation in
Haskell we just need this family of functions, one for every type.

For example, consider the functions

singletonBool :: Bool -> [Bool]

singletonChar :: Char -> [Char]

singletonBool b = [b]

singletonChar c = [c]

We didn’t really use anything about booleans or characters to do this. Natural trans-
formations in Haskell are polymorphic functions: they allow us to work with all types
at once. We can write

singleton :: a -> [a]

singleton x = [x]

More generally, for any two (endo-) functors, f and g, a natural transformation is a
polymorphic function

natTrans :: f a -> g a

In the case of singleton, the functors were identity Id from Example 3.43 and list [],
and we could have just as well written

singleton :: Id a -> [a]

singleton (Id x) = [x]

Note that the above natTrans is defined for all a, and using a language pragma, one
can write it as

{-# language RankNTypes #-}

natTrans :: forall a. f a -> g a
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Since we’ll be using natural transformations throughout the chapter, let’s make a
little infix operator, which can be inserted between two functors, to denote natural
transformations:

{-# language TypeOperators #-}

type f ~> g = forall a. f a -> g a

Notice that type doesn’t define a new type, it introduces a synonym for an existing
type. The infix definition is equivalent to:

type (~>) f g = forall a. f a -> g a

which says that (~>) takes two type constructors, f and g and constructs a type of
polymorphic functions. The compiler knows that these are type constructors, because
they are applied to the type variable a.

Example 3.55. Here is our infix operator ~> in action. We first define the type of all
natural transformations between Id and CInt:

type IdToConst = Id ~> CInt

Then we can give an example term of this type:

seven :: IdToConst String

seven _ = MkC 7

In fact all examples of IdToConst will be like this; see Exercise 3.56 for a set-theoretic
analogue.

Exercise 3.56. Consider the identity endofunctor id : Set → Set and the constant
endofunctor CN : Set → Set where CN(X) � N for all X ∈ Ob(Set). Show that every
natural transformation

Set Set

id

CN

⇓α

is constant, i.e. that if α is such a natural transformation then there is some n ∈ N such
that for all X ∈ Set the component αX : X → N is the constant function at n. ♦
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Haskell Note 3.57. When defining an operator, you can specify its fixity, associativity,
and precedence, as in:

infixr 0 ~>

This means that ~> is an infix operator that associates to the right and has the
lowest precedence, zero. In comparison, the function composition operator (.) has
the highest numeric precedence of 9 and function application is off the scale, with the
highest precedence.

As we said, the naturality condition (the commutativity of Eq. (3.54)) is not directly
expressible in Haskell but it is satisfied anyway. This is because the actual implementa-
tion of any natural transformation in Haskell can only be donewithin the constraints of
the polymorphic lambda calculus, or system F, so the whole family of functions must
be described by a single formula. There is no such restriction for the components of a
natural transformation α : F⇒ G in Definition 3.53. In principle, one could pick a com-
pletely different morphism αa : Fa → Ga for every object a. This would correspond to
picking one function, say, for Bool, and a completely different one for Int, and so on.
Such a thing is not expressible in system F. The one-formula-for-all principle leads to
parametricity constraints, also known as "theorems for free." One such theorem is that
a polymorphic function:

forall a. f a -> g a

for any two functors expressible in system F is automatically a natural transformation
satisfying naturality conditions.

The alternative to parametric polymorphism is called "ad hoc polymorphism." It
allows for varying the formulas between types. The typeclass mechanism we’ve seen
earlier implements this idea. For instance, the implementation of fmap varies from
functor to functor.

Example 3.58 (Lists to Maybes). In Example 3.39 we defined the Maybe functor. Here
we’ll show that there is a natural transformation from List (i.e. []) to Maybe.

safeHead :: [] ~> Maybe

safeHead [] = Nothing

safeHead (a: as) = Just a
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Exercise 3.59. Implement a natural transformation

uncons :: [a] -> Maybe (a, [a])

♦

Haskell Note 3.60. The function uncons is defined in a library, so you can use it if you
put the import statement at the beginning of your file:

import Data.List

If the library is in your path, you can load it into GHCi using the command

:load Data.List

3.6 Bonus: Representable functors and the Yoneda
embedding

To end this chapter, we want to provide one more lesson on categorical thinking.
Namely, we want to give a sense of a beautiful theorem, known as the Yoneda lemma,
which sits at the core of category theory. Roughly, the Yoneda lemma says that an
object in a category is no more and no less than its web of relationships with all other
objects. The Yoneda lemma formalizes the fact that thinking in terms of relationships
is as powerful as we’ll ever need. It will also help us think in what is known as a
“point-free” way, in terms of generalized elements.

A category is a web of relationships. Let a be an object in a category C. Given any
object x in C, we can ask what a looks like from the point of view of x. The answer to
this is encoded by the hom-set C(x , a), which is the set of all morphisms from x to a.
Collecting these views over all objects x of C, we can define a functor, known as the
functor represented by a.

Definition 3.61. Let a be an object in a category C. We may define a functor

ya : Cop → Set

sending each object x of C to the set C(x , a), and sending each morphism m : x → y to
the function ya(m) : C(y , a) → C(x , a) given by sending the element f : y → a to the
element ( f ◦ m) : x → a.

We call ya the functor represented by a.
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Example 3.62 (In a poset). If C is a poset and a ∈ C is an object, the representable functor
on a answers the question “is x less than or equal to a?” for every x. The answer is
Yes, if the hom-set C(x , a) is a singleton, and No, if it’s empty. For example, consider
the poset

TC B

Eq

Ord Num

Real Fractional

extends

extends
extends

extends

yOrd(Eq) � �
yOrd(Ord) � {extends}

yOrd(Num) � �
yOrd(Real) � {extends}

yOrd(Fractional) � {extends}

from ??. The functor yOrd : TCop → Set is the table shown right above.

Example 3.63. Let’s think about the category Set. We’ll write 1 � {∗} for some set with
one element. What is the functor represented by 1? First, it is a functor y1 : Setop → Set.
Where does it send a set X? Well, what are the functions from X → 1? Let’s suppose
we have a function f : X → 1. We have to send every element of x ∈ X to some element
f (x) of 1. But there is only one element of 1; its name is ∗. So f (x)must equal ∗. Thus
there is only one function from X to 1, and hence y1 sends every set to a one element
set. We recognize it as the constant functor.

Exercise 3.64. Consider the functor yB : Setop → Set, where B � {true, false}.
1. What is yB({1, 2, 3})?
2. Consider the function f : {a , b , c} → {1, 2, 3} given by f (a) � f (b) � 1 and

f (c) � 2. Write out yB( f ) as a function yB({1, 2, 3}) → yB({a , b , c}).
3. Explain how you can think of an element yB(X) as a subset of X for each set X.
4. Given a function f : W → X, what does yB( f ) do to subsets, given the perspective

you came up with in part 3. ♦

Exercise 3.65. We said that the functor represented by a is a functor ya : Cop → Set.
Prove that it does indeed obey the conditions in the definition of functor, Definition 3.1.

♦

So for any category C and an object a ∈ C, we can look at a’s part in the network of
relationships that is C, and we can package it as a set-valued functor. Why bother with
this? TheYoneda lemmasays that knowing this information completely characterizes—
determines—the object a up to unique isomorphism. We’ll just state this particular
part of the lemma, to show how it looks in the language of category theory.
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Theorem 3.66 (The Yoneda embedding). Let a and b be objects of a category C. If
there is a natural isomorphism between the functors ya and yb : Cop → Set, then a is
isomorphic to b.

Exercise 3.67. Suppose we have a natural transformation

C Set

ya

yb

⇓α

Use it to find a morphism a → b. Hint: find a special element of ya(a) and plug it in to
the component αa . ♦

We’ll leave the full statement and theproof of theYoneda lemma to another resource;
an excellent presentation is given in Leinster for example. For now we want to unpack
some of its philosophical consequences, and discuss how they affect how we think
about category theory and programming.

Let’s imagine the Yoneda embedding as a game. First, we choose a category C that
we both completely understand. Then I pick a secret object a in C. Your goal is to find
an object that’s isomorphic to my secret object.

You’re allowed to get information about the object in two ways. First, if you name
an object x, I must tell you the set ya(x) � C(x , a) abstractly as a set, but I don’t have
to tell you anything about how its elements are related to the morphisms you see
in C. Second, if you name a morphism m : x → x′, I have to tell me the function
ya(m) : C(x′, a) → C(x , a) between those abstract sets.

The Yoneda lemma says that you can always win this game; see Exercise 3.68.
Let’s think about how I might win it in a poset. Suppose you pick some element a

of a poset P. I can keep naming elements of P, and ask you if they are less or equal to
a (see Example 3.62). With every question I can narrow down the choices until all that
remains is a and the elements that are isomorphic to it. Here, x is isomorphic to a if
x ≤ a and a ≤ x.

Another helpful example is in the category Set. In fact, in this setting I can win the
game just by naming one object. Which object? The object 1 B {1}. To see this, think
about the functions f from 1 to any set a. Such a function sends the unique element
1 of 1 to some element f (1) of a. That’s it. So functions f : 1 → a are the same as
elements of X. In other words, Set(1, a) � a. So I ask you ya(1), you give me a set, and
I say “that’s a!”

In the category Set, we only have sets (objects) and functions (morphisms); we don’t
know what an element is. But the above strategy shows that we don’t need to, as long
as we know which object is 1: an element of X is the same thing as a function 1→ X.
We call a function 1→ X a global element of X.
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Note that from this viewpoint, evaluation of functions is a special case of composi-
tion. Suppose that we have an element x ∈ X, and a function f : X → Y, and want to
figure out f (x) ∈ Y. The global element corresponding to f (x) is simply the composite
of f : X → Y with the global element x : 1→ X corresponding to x.

1

X Y

x y

f

The category Set is very special in this regard: the Yoneda embedding game can be
won just by naming a single object. In a more general setting, the Yoneda embedding
game is not so immediate. It thus helps not just to talk of global elements, but about a
notion of generalized element.

A generalized element of x of shape c is just another name for a morphism c →
x. Nonetheless, it’s useful to think in these terms. While a set is defined by its
(global) elements, theYoneda embedding says that in any category, an object is (roughly
speaking, that is up to isomorphism) defined by its generalized elements.

Exercise 3.68 (Challenge). Give a strategy for winning the above “Yoneda” game in
a general category C. (You can either assume that C has finitely many objects and
morphisms or that you have infinite amount of time and patience.) ♦





Chapter 4

Algebras and recursive data
structures

When we think about algebra, we think of solving equations (or sets of equations)
with variables like x or y. There are two parts to an algebra: one is the creation of an
expression and the other is the evaluation.

From the point of view of a programmer, an expression is modeled as a tree whose
nodes are operations, like + or ∗, and whose leaves are terminal symbols, either constants
or variables (placeholders for values). For instance, the expression

2x2
+ 3x + 4 (4.1)

corresponds to a tree
+

∗ +

2 ∗ ∗ 4

x x 3 x

(4.2)

The tree in Eq. (4.2) is called a parse tree; it’s how a parser would see the expression
from (4.1). A parser takes such expressions and converts them into tree-like data
structures, ones specifically chosen for the types of operations and terminal symbols
the programmer wants to consider. Here the tree-like data structure decorates each
node with either Plus or Times and decorates each leaf with either Const or Var.

-- Form an expression by either

data Expr = Plus Expr Expr -- adding two expressions

| Times Expr Expr -- multiplying two expressions

| Const Double -- having a constant in hand, or

| Var String -- having a variable name in hand.

97
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This is a recursive data structure: its definition refers to itself, and how this looks
category-theoretically is the subject of the present chapter.

Exercise 4.3. The parse tree in Eq. (4.2) actually includes an implicit choice of how to
parenthesize the expression in Eq. (4.1); what is it? ♦

When constructing an expression of the above form, you can bootstrap yourself by
first constructing the non-recursive expressions—those that don’t include Expr again—
namely the Const or Var constructors. These in turn can be passed to the recursive
constructors Plus and Times. The expression Eq. (4.2) would be written as

expr :: Expr

expr = Plus (Times (Const 2)

(Times (Var "x") (Var "x")))

(Plus (Times (Const 3) (Var "x"))

(Const 4))

4.1 The string before the knot

One might make an analogy between the Haskell data type Expr on page 97 and some
sort of fractal: it is built out of smaller versions of itself.1 We can also imagine a
recursive data type as being like a knot, or looped string. Our goal in this section is to
explain what serves as the string and what serves as the knot.

The string of a recursive data type is a functor, and the knot is its initial algebra.

To begin understanding Expr, we define a non-recursive type constructor that looks
almost the same, except with a placeholder a replacing the recursive branches.

data ExprF a = PlusF a a --As above, except a in place of Expr

| TimesF a a

| ConstF Double

| VarF String

Before we go on, let’s verify that this is a functor, just so you see the track we’re
on.

1In fact, there is a formal relationship in terms of (“colored”) operads. Free operads correspond to
context-free grammars; see [MakkaiPowerHermida], and fractals like Sierpinski triangles, etc. corre-
spond to fixed points of certain operad algebras [Leinster].
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Exercise 4.4.
1. Implement the functor instance fmap for ExprF.
2. If this were a functor F : Set→ Set, what would it be?
3. What is F(�)?
4. What is F(F(�))? ♦

What can we do with the functor ExprF? Before we said that we build up expres-
sions from the leaves, i.e. the constructors that don’t include Expr (or what is now a).
Interestingly, this corresponds to a simple idea: apply the functor to Void. This will
allow us to construct the leaves, but nothing else

type Leaf = ExprF Void

For instance, we can construct

e3, ex :: Leaf

e3 = ConstF 3

ex = VarF "x"

But that’s about the end of it: if wewanted to use the other two constructors to construct
terms of type Expr Void, we would have to provide themwith terms of type Void, and
there aren’t any.

But we can do something else instead, hinted at in Exercise 4.4. Namely, if we want
to construct depth-2 trees, we apply ExprF to the newly constructed leaves. We define
a new type

type Expr2 = ExprF Leaf -- ExprF (ExprF Void)

With this new type we can build some shallow expressions like

e3x, e4, ex2, e2 :: Expr2

e3x = TimesF e3 ex -- 3 * x

e4 = ConstF 4

ex2 = TimesF ex ex -- x * x

e2 = ConstF 2

Continuing this process, we can define deeper and deeper tree types

type Expr3 = ExprF Expr2

type Expr4 = ExprF Expr3
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and build up larger subexpressions, all the way to our original expression tree:

e3xp4, e2x2 :: Expr3

e3xp4 = PlusF e3x e4 -- 3 * x + 4

e2x2 = TimesF e2 ex2 -- 2 * x * x

expr' :: Expr4 -- Finally!

expr' = PlusF e2x2 e3xp4 -- 2 * x * x + 3 * x + 4

Notice that we didn’t use recursion at all. On the other hand, every time we wanted
to increase the depth of our tree, we had to define a new type. We ended up with the
following type

expr' :: ExprF (ExprF (ExprF (ExprF Void)))

Here’s a crazy idea: what if we could tie a knot that wouldmake the output of ExprF
also be its input type. This would let us apply ExprF infinitely many times, and so we
should get a data type that can deal with a tree of any depth. Amazingly enough, as
we will soon see, this procedure can be made rigorous, and yield the original recursive
definition of Expr (or, at least, something isomorphic to it). This relies on something
important about our type constructor ExprF, namely that it is a functor, as you checked
in Exercise 4.4.

We will get to how to tie the knot in Section 4.3, but first we want to say what you
can dowith recursive data types. This not onlymotivates the formalism, it’s an integral
part of it!

4.2 What you can do with recursive data types

Our running example of Expr and ExprF illustrates how we can (painstakingly) create
expressions starting from a functor. But algebraic expressions don’t do much for us in
the abstract; the point of such an expression is to evaluate it.

What does it mean “to evaluate” an expression? It means replacing the whole tree
with a single value of some chosen target type by performing operations as specified.
The obvious choice for the target type would be Double, since the Const leaf contains
it.

But there are other options as well, e.g. String! We could take the expression tree
from Eq. (4.2) for instance, and evaluate it as a single string, say "2*x*x+3*x+4". Or
we could hand it off to something that estimates the time each operation would take
and then returns to us the total time for this computation.

We could come up with any number of ways to evaluate the expression, in terms
of any target type we could think of, as long as we abandon our preconceptions about
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the meaning and properties of the operators in question. We could evaluate + using -
and * as const (const 0). So what exactly are the rules for evaluating?

Let’s start with the case of evaluating to the target type Double, as it makes most
sense to us. Here’s the type:

eval1 :: ExprF a -> Double

We start with the leaves. The ConstF leaf is obvious:

eval1 (ConstF d) = d -- evaluate the double d as itself

To evaluate the variable leaf, we have to decidewhat value to assign to "x".Let’s say our
evaluator will set "x" equal to 2 (we can create a separate evaluator for each interesting
value of "x", or we could make a function that takes "x" and returns the appropriate
evaluator)

eval1 (VarF "x") = 2

We are pattern matching the constructor VarF from Section 4.1 and, inside it, pattern
matching the string "x". This is not an exhaustive match, so we’ll provide the default
pattern as well. We’ll set, arbitrarily, all other variables to zero

eval1 (VarF _) = 0

Haskell Note 4.5. The underscore _ is a match-all wildcard pattern, but the matching is
done in the order of definitions, so it will be tried only after the first match, with the
string "x", fails. In a more professional implementation, we would look up the name
of the variable in some kind of environment that matches variable names with values.

But now we have a problem: how to implement the operators? The obvious (and
correct) choice doesn’t type check

eval1 (PlusF x y) = x + y

The compiler tells us that it “Couldn’t match expected type ‘Double’ with actual type
‘a’". This is remedied by making the type of a be Double. Our evaluator will have the
type

eval1 :: ExprF Double -> Double
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The idea is that, when the time comes to evaluate the PlusF or TimesF node, we will
have already evaluated the child nodes, and they would be the values of type Double.

All that’s left is to combine these results. Here’s the complete evaluator

eval1 :: ExprF Double -> Double

eval1 (ConstF d) = d

eval1 (VarF "x") = 2

eval1 (VarF _) = 0

eval1 (PlusF x y) = x + y

eval1 (TimesF x y) = x * y

There’s just one thing missing: How do we combine these partial evaluators into
one recursive algorithm that would evaluate any recursive expression tree. This is
what we’ll be studying in the next section, with the help of category theory. For now,
let’s gather together the important components of an algebra we’ve been using so far,
without being too specific.

We need an endofunctor F–herewe used ExprF. Even if themore general categorical
setting, this must still be an endofunctor F : C → C rather than an arbitrary functor
between any two categories; the reason is simply that we’ll need to recursively apply it
to itself.

Once we have the endofunctor we can talk about algebras for it. These are just the
“evaluators” for in the above sense; it is these we call F-algebras. We did above this
by choosing a type a (namely Double), and a morphism Fa → a. Notice that, had we
chosen a different type, say String, we would have to implement a different evaluator,
namely ExprF String -> String.

Exercise 4.6. Implement an evaluator showEx :: ExprF String -> String that pro-
duces a text version of the expression, as on page 100. ♦

Now that we have made connection with the high-school definition of algebra, we
can start exploring what else fits our abstract description. For instance, what if we
simplified the tree by replacing binary nodes with unary nodes? A tree that doesn’t
branch is just a list.

In the expression tree, we stored values at the leaves, but a non-branching tree can
only have one leaf. So let’s instead store values at the nodes and, for the sake of an
example, let’s store integers. We get:

data ListF a = Node Int a

| Leaf

We can represent an empty list by replacing awith Void
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type List0 = ListF Void

Lists of up to length one can be generated by

type List1 = ListF List0

and so on. Each next type can accommodate lists longer by one integer.
Here are two examples of evaluators ListF Int -> Int

evalSum (Node n x) = n + x

evalSum Leaf = 0

and

evalProd (Node n x) = n * x

evalProd Leaf = 1

Our intuitions about algebras as having something to do with operations on num-
bers can get us only so far. A list, for instance, doesn’t have to contain numbers. Here’s
a more general definition of a list functor which, as we’ll see later, leads directly to the
definition of a list:

data ListF c a = NilF | ConsF c a

This definition is parameterized by the type of the contents c. We also use more
traditional names for the leaf and node constructors of a list. Categorically, this functor
is written as 1 + c × a, as a coproduct of the terminal object 1 and a product of c and a.

4.3 Algebras

On page 102 and in Exercise 4.6 respectively, we gave a programs

eval1 :: ExprF Double -> Double

showEx :: ExprF String -> String

the first ofwhich evaluates an expression as a Double, the second ofwhich pretty-prints
an expression as a String. The commonality is captured by the followingHaskell type:

type ExprFAlg a = (ExprF a) -> a
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It is in this idea—called an algebra—that the recursive knot will be tied in Section 4.4.
For now, we have motivated the following:

An F-algebra is just a morphis Fa → a for some particular a.

Definition 4.7 (F-algebra). Let F : C→ C be an endofunctor. An F-algebra (c , ϕ) is
(a) An object a ∈ C, called the carrier
(b) A morphism ϕ : Fa → a, called the structure map.

In Haskell, we define:

type Algebra f a = f a -> a

An Algebra is parameterized by a type constructor f and a type a.
Notice that the function (f a) -> a is not polymorphic (there is no forall there).

We define an algebra as a particular function for a particular choice of type a. There is
no additional condition imposed on this function. There are no laws to be enforced.

We can say now that ExprFAlg above is an Algebrawith the functor ExprF in place
of f.

Exercise 4.8. Implement something of type Algebra ExprF Double. Hint: we already
have above somewhere, so just find it and make sure it type checks. ♦

Definition 4.9 (Morphism of F-algebras). Given two F-algebras Fc
ϕ
−→ c and Fd

ψ
−→ d,

an algebra morphism f : (c , ϕ) → (d , ψ) consists of a morphism f : c → d in C such that
the following diagram commutes:

Fc Fd

c d

ϕ

F f

ψ

f

You might have guessed what’s coming. Since we were able to define mappings
between algebras, chances are they form a category.

Proposition 4.10 (Category of F-algebras). For every endofunctor F there is a category
F−Alg, whose objects are F-algebras, morphisms are morphisms of F-algebras, and
whose composition and identities are given by those in C.
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Exercise 4.11. Prove that F−Alg is indeed a category. That is, check that the composite
of two F-algebra morphisms is again an F-algebra morphism, that the identity is an
F-algebra morphism, and then that this data obeys the unit and associative laws. ♦

4.4 Initial algebras

Now that we have a category of F-algebras, we can ask whether it has an initial object
(see Section 2.2.2). We’ll see that, when it does, it ties the recursion knot we’ve been
discussing.

Definition 4.12 (Initial algebra). An initial algebra for a functor F is an initial object in
the category of F-algebras.

The above definition is a little terse, so let’s unpack it. Given a functor F : C → C,
an initial algebra (i , ϕ) for F is an object i and morphism ϕ : Fi → i such that for every
F-algebra ψ : Fa → a there exists a unique morphism cataa ,ψ : i → a in C such that the
following diagram commutes

Fi Fa

i a

F(cataa ,ψ)

ϕ ψ

cataa ,ψ

In mathematical literature, you’ll often find the notation µF for the carrier of the initial
algebra for the functor F.

Definition4.13 (Catamorphism). Theuniquemorphism cataa ,ψ : i → a from the carrier
of the initial algebra is called the catamorphism for ψ : Fa → a.

Here we have an example of an initial object that is truly a universal producer. If
you think of Fa as a list of ingredients to produce an a, and the structure map ψ as the
recipe to produce it, then the object i is the “universal replicator” that, given this list
and the recipe, can produce an a. The trick is that the same object i will work with any
recipe. Continuing with this analogy, the initial algebra is a recipe ϕ for producing
the universal replicator given a list of universal replicators. That’s where the recursion
kicks in.

From the programming point of view, this is the main reason for using algebras: to
define recursive data structures. We start by defining a (non-recursive) functor, which
serves as an inventory (a sum) of universal nodes that can store arbitrary items (e.g.,
NilF for an empty node and ConsF for a unary node). Then we define a recursive
data type by plugging in, in the place of the arbitrary item, the very data type we are
defining.
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Example 4.14. Recall the list functor 1 + c × a

data ListF c a = NilF | ConsF c a

Let’s construct the initial algebra for it. We’ll call its carrier List c (it’s parameterized
by the type of the payload, c). Its structure map is a function

phi :: ListF c (List c) -> List c

There are two cases to consider:

phi NilF = _

phi (ConsF c lst) = _

Both are supposed to produce a List c. We just make them into two constructors of
List c

data List c = Nil | Cons c (List c)

The first, Nil, takes no arguments (or, equivalently, a unit argument); and the second,
Cons, takes a c and a List c. The first constructs an empty list and the second prepends
a new value to an existing list. Notice how the type argument a in the definition of
ListFwas replaced by the type we are constructing.

We can then implement phi in terms of these constructors

phi NilF = Nil

phi (ConsF c lst) = Cons c lst

Example 4.15. Continuing with the previous example, let’s focus on a list of integers
and consider the following algebra with the Int carrier

evalSum :: Algebra (ListF Int) Int

evalSum (ConsF n x) = n + x

evalSum NilF = 0

If List Int is indeed the initial algebra, there must be a unique function from it to the
carrier Int, the catamorphism, that uses evalSum

cataSum :: List Int -> Int
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cataSum Nil = evalSum NilF

cataSum (Cons n ns) = evalSum (ConsF n (cataSum ns))

This catamorphism calculates the sum of all the elements in the list.

Exercise 4.16. Implement a catamorphism for the following algebra

evalProd :: Algebra (ListF Int) Int

evalProd (ConsF n x) = n * x

evalProd NilF = 1

♦

4.4.1 Lambek’s lemma

The evidence that initial algebras somehow tie the recursion knot is found in Lambek’s
lemma.

Theorem 4.17 (Lambek’s lemma). The structure map of the initial algebra is an iso-
morphism.

Proof. Notice that if (i , ϕ) is an initial algebra, then (Fi , Fϕ) is is an algebra as well:
Fϕ : F(Fi) → Fi. Initiality tells us that there is a unique algebra morphism, meaning
there is a unique function h : i → Fi making the following diagram commute:

Fi F(Fi)

a Fi

Fh

ϕ Fϕ

h

(4.18)

Our goal is to show that h is the inverse of the structure map ϕ. It’s easy to show
that ϕ itself is an algebramorphism, because the following diagram trivially commutes

F(Fi) Fi

Fi i

Fϕ

Fϕ ϕ

ϕ

Pasting the two commuting diagrams along the common arrow Fϕ, we arrive at the
conclusion that the outer rectangle in the following diagram commutes:

Fi F(Fi) Fi

i Fi i

Fh

ϕ

Fϕ

Fϕ ϕ

h ϕ
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Therefore, the composite ϕ ◦ h is an algebra morphism. Moreover, this is an algebra
morphism between (i , ϕ) and itself. Initiality tells us that there can only be one such
morphism. Since the identity morphism is an algebra morphism, we must have that
ϕ ◦ h � idi .

To show that ϕ and h are inverse, we still need to show that h ◦ϕ � idFi . So consider
Eq. (4.18) again. Starting with the commuting condition, we apply the functor laws
and the previous result, ϕ ◦ h � idi :

h ◦ ϕ � (Fϕ) ◦ (Fh)
� F(ϕ ◦ h)
� F(idi) � idFi .

This completes the proof. �

We have shown that the initial algebra of an endofunctor F is a type i and an
isomorphism between a and Fi. This ties the knot of recursion, because it means that
i is a fixed point of F. Using the notation µF for the initial algebra, the fixed point
condition can be written as

F(µF) � µF

4.5 Recursive data structures

Here’s some intuition behind initial algebras. We have an endofunctor F that describes
just one level of a recursive data structure. We’ve seen it applied to the case of lists, as
well as to our original example of expression trees; see Section 4.1, where we discussed
this:

data ExprF a = PlusF a a

| TimesF a a

| ConstF Double

| VarF String

The functor ExprF generates leaves (Double and String) and nodes (for PlusF and
TimesF. Each binary node contain a pair of placeholders of the same arbitrary type.
The recursive version of the tree replaces these placeholderswith the recursive versions
of the tree. For instance, the node

PlusF a a

becomes

Plus Expr Expr
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We also went through the exercise of manually increasing the allowed depth of a tree
by stacking the applications of ExprF on top of Void. Think of this as consecutive
approximation of the desired result, which is a full-blown recursive tree. If you are
familiarwith theNewton’smethodof calculating roots, this is a very similar idea. When
you keep applying the same function over and over, you are getting closer and closer to
a fixed point (under some conditions). A fixed point is a value with the property that
one more application of the function doesn’t change the value. Informally, the fixed
point has been reached after applying the function infinitely many times, and infinity
plus one is the same as infinity.

A fixed point SF of an endofunctor F can be defined the same way. It’s a solution to
the equation

SF � F(SF)

What’s wonderful is that this equation itself can be used as a Haskell definition of the
corresponding data type, and that the resulting type is the initial algebra. Let’s first
write a simple version and then analyze the actual implementation from the library
Data.Fix.

Here is the almost literal translation of the defining equation, except that Haskell
requires us to explicitly name the data constructor:

data S f = MakeFix (f (S f))

This data type is parameterized by a type constructor f, which in all practical appli-
cations will be a Functor. The right-hand side is a data constructor that applies f to
the fixed point we are in the process of defining. This is where the magic of recursion
happens; it ties the recursion knot.

The beauty of this definition is that it decomposes the problem of defining recursive
data structures into two orthogonal concerns: one abstracts recursion in general and
the other is the choice of the particular shape we are going to recursively expand.

Before we go on, note that we get the inverse function quite easily:

unFix :: S f -> f (S f)

unFix (MakeFix a) = a

Haskell Note 4.19. Here’s the definition of the fixed point type used in the library
Data.Fix

newtype Fix f = Fix { unFix :: f (Fix f) }

It’s equivalent to the one above, but it contains a lot of puns, so let’s analyze it step by
step. The left-hand side is a type constructor, which takes a type constructor f as its
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argument, just like S did above. We use newtype in place of data, the only difference
being related to performance: since newtype is more performant, we’ll use it every time
we are allowed to.a

The right hand side is a data constructor, which is given the same name as the type
constructor: Fix. We use the record syntax, so we don’t have to define the accessor
separately. This is as if we have defined it more explicitly

unFix :: Fix f -> f (Fix f)

Compare this with the type of the data constructor

Fix :: f (Fix f) -> Fix f

adata can be replaced by newtype if there is exactly one data constructor with exactly one field.

Given a functor F, its least fixed point is a fixed point i with Fi � i that is “least”
in the sense that it has a unique algebra map to any other fixed point. Certainly the
carrier of the initial algebra has this property. Therefore, as long as Fix f is uniquely
defined, we can use it for constructing initial algebras (and, later, terminal coalgebras).

An algebra, in Haskell, is defined by a functor f, the carrier type a and the structure
map. This is neatly summarized in one type synonym which we saw on page 104:

type Algebra f a = f a -> a

Lambek’s lemma tells us that the initial algebra is an isomorphism. Indeed, the
structure map for the algebra whose carrier is Fix f has the type signature (replacing
awith Fix f)

f (Fix f) -> Fix f

This is exactly the type signature of the data constructor Fix. Its inverse is the accessor
unFix. In fact, any data type that is defined using newtype automatically establishes
an isomorphism.

4.5.1 Returning to expression trees

Let’s go back to our initial example, which was based on the following functor

data ExprF a = PlusF a a

| TimesF a a

| ConstF Double

| VarF String

derive Functor
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Haskell Note 4.20. In Haskell, most algebraic data structures have an instance for a
Functor which automatically satisfies functor laws. In fact the compiler can derive
functor instances automatically if, as we did here, we make derive Functor part of
the type definition. This requires invoking the following pragma at the head of the file

{-# language DeriveFunctor #-}

We can define the fixed point for the above functor—like any functor—using Fix:

type Ex = Fix ExprF

This new data structure is fully equivalent to the original recursive definition of Expr,
except that it requires a little more bookkeeping, the constructor Fix shows up repeat-
edly. This is why it’s convenient to define smart constructors that take care of performing
the appropriate incantations

var :: String -> Ex

var s = Fix (VarF s)

num :: Double -> Ex

num x = Fix (ConstF x)

mul :: Ex -> Ex -> Ex

mul e e' = Fix (TimesF e e')

add :: Ex -> Ex -> Ex

add e e' = Fix (PlusF e e')

We are using the data constructor Fix and passing it terms of the type ExprF x, where
x is either irrelevant (leaves) or is of the type Ex.

With the help of these functions, we can recreate our original expression from
page 100

-- 2 x^2 + 3 x + 4

ex'' = add (mul (num 2)

(mul (var "x")(var "x")))

(add (mul (num 3) (var "x")) (num 4))

Unlike before, we have one type Ex, rather than an infinite hierarchy of types Expr1,
Expr2, Expr3, Expr4,.... This was made possible using initial algebras.
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4.5.2 The essence of recursion

Recursion is a very useful tool in problem decomposition. When faced with a large
problem we decompose it into smaller problems and try to solve them separately.
Recursion happens when the smaller problems have the same “shape” as the bigger
problem. We can then apply the same method to solve these smaller problems, and so
on.

The key to implementing a recursive solution is to define a “recursive step.” Imagine
that you have successfully solved all the subproblems. The recursive step takes all these
solutions and combines them to obtain the solution to the current problem. Here’s the
implementation of the workhorse of all recursive examples, the factorial. Notice that
it’s written in a way that emphasizes the idea of the recursive step. The placeholder a is
put in the exact place where the solution of the subproblem should magically appear.

fact n = if n <= 0

then 1

else n * a

where

a = fact (n - 1)

The subproblem, in this case, is the evaluation of the factorial of the predecessor of n.
The where clause in Haskell let’s us give names to local expressions or functions

that are used elsewhere in a function. The where clause has access to the arguments
of the function (here, n) and to everything defined in the global scope (here, the fact
function itself).

The same idea works for recursive data structures in place of recursive functions. The
functor (ExprF in our example) plays the role of a recursive step. It has placeholders for
“solutions” to smaller subproblems. When we want to define our recursive expression
tree, we bootstrap ourselves by assuming that we have solved the problem of defining
smaller recursive trees and plugging them into the holes in our functor. This is the
meaning of f (Fix f) in the definition of the initial algebra.

Now that we have defined recursive data structures, we can define recursive func-
tions on them, applying the same strategy to the evaluation of the recursive expression.
Suppose that we want to calculate a result that is a Double. The recursive step in this
case is to assume that we have successfully evaluated the subexpressions, that is, we
have filled the holes in our functor with Doubles. We have a functor-full of Doubles, i.e.
a term of the type ExprF Double. All we have to do is to combine partial evaluations
into one final result, in other words, provide a function

ExprF Double -> Double
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But this is exactly what’s needed to define an algebra Algebra ExprF Double. The
algebra is precisely the recursive step that wewere looking for. We also have amachine
that accepts an algebra and cranks up the recursion, namely catamorphism. Let’s
discuss it again in the light of Fix.

4.5.3 Algebras, catamorphsims, and folds

Recall that an algebra for a functor f is defined using the carrier type a and the structure
map

type Algebra f a = f a -> a

We stress again that the structure map is not a polymorphic function: the carrier a is
fixed in the type constructor. In other words, there is no place to put forall a.

As mentioned above, an algebra defines a single recursive step f a -> a. What we
need is a way to apply this algebra recursively to the recursive data structure Fix f, a
fixed point of the functor f. This fixed point depends only on the functor f. In principle,
it has no knowledge of the type a, which is the carrier of the algebra. Our goal is to
extract a term of type a from a term of type Fix f. Since Fix f is the carrier of the
initial algebra, we know that there is a unique algebra morphism to our algebra: the
catamorphism from Definition 4.13. But knowing that the morphism exists is not the
same as having a recipe for implementing it. And this is where the Lambek’s lemma
kicks in. Here’s a diagram that combines the Lambek’s lemma, the isomorphism
between f (Fix f) and Fix f, and the definition of the algebra morphismwewill call
cata alg.

f (Fix f ) f a

Fix f a

fmap (cata alg)

Fix algunFix

cata alg

Because the diagram commutes, we can read it as

cata alg � alg ◦ fmap (cata alg) ◦ unFix

or, using Haskell notation

cata :: Functor f => Algebra f a -> Fix f -> a

cata alg = alg . fmap (cata alg) . unFix

We can now finish our running example. Our recursive step for the functor ExprF is
an algebra with the carrier Double and the evaluator (structure map) given by
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eval1 :: Algebra ExprF Double

eval1 (ConstF x) = x

eval1 (VarF "x") = 2

eval1 (VarF _) = 0

eval1 (PlusF x y) = x + y

eval1 (TimesF x y) = x * y

We can use the catamorphism to evaluate the expression ex'' from page 111:

> cata eval1 ex''

> 18.0

The catamorphism is a powerful tool in our toolbox. It takes care of the difficult part of
defining recursive algorithms by abstracting the recursion. Defining an algebra, which
is a non-recursive evaluator, is much simpler than implementing a full-blown recursive
algorithm. In fact, it is often so much easier that it’s worth rethinking an algorithm in
terms of a data structure, rather than explicit flow of control. In a sense, a recursive
data structure is a convenient visualization of an often complex flow of control.

4.6 Coalgebras, anamorphsims, and unfolds

As a rule of thumb, every notion in category theory has its dual, given by reversing the
arrows. Do this to the notion of algebra Fa → a and you get that of coalgebra a → Fa.

-- for any functor f

type Algebra f a = f a -> a

type Coalgebra f a = a -> f a

Just as an algebra can be thought as an evaluation—turning a data structure into a
single value—a coalgebra can be thought of as generating a data structure from a seed.
The carrier type a is the type of the seed. The idea of a coalgebra is that you are given
a seed and you use it to create a single level of a recursive data structure. The single
level is described by a functor, and the recursive data structure is described by its fixed
point. In the process you create new seeds and plant them in the holes defined by the
functor. The machinery that cranks the recursion is dual to catamorphism; it’s called
an anamorphism:

ana :: Functor f => Coalgebra f a -> a -> Fix f

ana coalg = Fix . fmap (ana coalg) . coalg
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The above Haskell code is clearly analogous to that defining catamorphism on
page 113. Just like a catamorphism is the unique map from the initial algebra to your
choice of algebra, an anamorphism is the unique map from your choice of coalgebra
to the terminal coalgebra. A coalgebra morphism is defined by a commuting square
analogous to the one for algebra morphisms but with the arrows reversed:

Fc Fd

c d

F f

f

ϕ ψ

In terms of the mathematics, we have a dual version of Lambek’s lemma that holds
for coalgebras; it shows that the terminal F-coalgebra is a fixed point of F. The initial
algebra is the least fixed point and the terminal coalgebra is the greatest fixed point of F. In
mathematical literature, you’ll often find the notation νF for the carrier of the terminal
coalgebra. Lambek’s lemma tells us that νF is a fixed point of F:

F(νF) � νF

It turns out that there is always a canonical morphism from the initial algebra to the
terminal coalgebra, µF→ νF.

Exercise 4.21. Suppose that F is a functor. Use Lambek’s lemma to show that
1. the initial F-algebra is also a coalgebra
2. the terminal F-coalgebra is also an algebra
3. the resulting catamorphism and anamorphism are the same: they define the

canonical map µF→ νF.
♦

In Set this morphism is an injective function which embeds the elements of the (carrier
set of) the initial algebra in the terminal coalgebra. This is not a bĳection, though. In
fact, in a category where the initial object is different from the terminal object there is a
simple example of an endofunctor whose initial algebra is different from the terminal
coalgebra.

Proposition 4.22. Consider the identity functor Id in C. Its initial algebra has the initial
object as its carrier, and its terminal coalgebra has the terminal object as its carrier.

Proof. For any object a, we have Id a � a. Thus the identitymorphism ida serves as both
an Id-algebra and an Id-coalgebra with carrier a. A morphism between Id-algebras is
just a morphism between their carriers, and similarly for Id-coalgebras.

Thus the category of Id-algebras is isomorphic to that of Id-coalgebras, and both
are isomorphic to the category C. In particular, the initial algebra is the initial object
0, and the terminal coalgebra is the terminal object 1. The unique morphism from the
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initial object to the terminal object is the canonical mapping from the initial algebra to
the terminal coalgebra. There is no guarantee though that the inverse mapping exists
and, as a matter of fact, there isn’t one in Set. �

The situation inHaskell is different than inSet. Weonlyhaveonedefinitionof afixed
point combinator Fix and it works for both initial algebras and terminal coalgebras.
This has to do with Haskell’s laziness, and we’ll come back to this point later. Because
of laziness, it’s perfectly okay to define a data structure whose terms stretch on forever.
The data stored in such a structure is only evaluated when and to the extent that the
program tries to access it. By using infinite data structures we can transform how
we think about algorithms. Instead of coding a system of recursive functions, we can
instead work on generating and traversing a single data structure. Let’s see how it
works in practice.

4.6.1 The type of streams, as a terminal coalgebra

The simplest non-trivial infinite data structure is a generalization of a list called a
Stream. It is generated by a functor that drops the nullary list constructor Nil. It’s the
constructor which allows the recursion to terminate—therefore streams never termi-
nate.

data StreamF a x = StreamF a x

deriving Functor

This functor takes any type x and pairs it with a. The fixed point of this functor is the
type of infinite streams

type Stream a = Fix (StreamF a)

We can expand this definition by tying the recursive knot—replacing xwith the result
of the recursion

data Stream a = MkStream a (Stream a)

We can map out from a Stream a by pattern matching on its constructor MkStream.
The head of the stream is an a and the tail is another Stream a, of which the head is
an a and the tail is another Stream a, of which... ad infinitum. Again, a stream never
ends.

head :: Stream a -> a

tail :: Stream a -> Stream a

head (MkStream a s) = a
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tail (MkStream a s) = s

-- in terms of Fix

head (Fix (StreamF a s)) = a

tail (Fix (StreamF a s)) = s

But how do we create a term of type Stream a? We can’t possibly pre-fill it with
infinitely many choices of a’s. This is where an anamorphism shows its usefulness. An
anamorphism can (lazily) generate an infinite data structure from a seed.

Let’s start with some anamorphisms that are built into the language. For instance,
the infinite list of integers starting with 2 can be created using the syntax

intsFrom2 :: [Int]

intsFrom2 = [2..]

Exercise 4.23. Implement a function intsFrom :: Int -> Stream Int that uses
an anamorphism to generate a Stream of integers starting from n. In other words
intsFrom 2 should be the same thing as [2..]. ♦

Categorically, a stream is generated by the product functor Fa x � a × x, where a is a
fixed object. Youmight be wondering what the initial algebra is for this functor. Notice
that, if we chose a to be the terminal object 1, this functor is equivalent to the identity
functor (the terminal object is the unit of the product). We’ve seen before that, at least
in Set, the initial algebra for this functor is different from the terminal coalgebra. In
fact, in Set the initial algebra for the product functor is the empty set

Exercise 4.24. Show that the initial object 0 together with the identity morphism is the
initial algebra for the functor Fa x � a × x. (Hint: what is the product a × 0?) ♦

However, as we’ll discuss soon, the situation is different in Haskell.
For now, let’s move on to creating more interesting terms of type Stream a.

4.6.2 The stream of prime numbers

As an example of using streams in practice, let’s generate the stream of all prime
numbers using a version of the sieve of Eratosthenes. We start with a seed that is the
list [2..] of all integers greater than one. Notice that it begins with a prime number.
We’ll keep it this way after every recursive step. First, we extract this number,then we
eliminate all its multiples from the tail. This decimated list becomes our new seed.
Notice that, again, it begins with a prime number.

We package this idea in a coalgebra sieve whose carrier is the type [Int] of all
integer lists, the type of all the seeds we mentioned above.
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IntStreamF = StreamF Int

sieve :: Coalgebra IntStreamF [Int]

-- sieve :: [Int] -> IntStreamF [Int]

sieve (p : ns) = IntStreamF p (filter (notdiv p) ns)

where notdiv p n = n `mod` p /= 0

Let’s analyze this code, since it contains some new syntax. The argument is a list, so we
pattern match it to the infix constructor : (corresponding to Cons in the more verbose
implementation of the list). If we were to release this code to the public, we would
make the pattern matching total, and include the case of an empty list []. Here, we just
assume that nobody will dare to call us with a finite list. The result is a pair disguised
as a stream functor constructor. Its first component is the prime number p :: Int
from the head of the list. The second is a filtered tail, where filter is a library function
that takes a predicate and passes through only those elements of the list that satisfy it.

filter :: (a -> Bool) -> [a] -> [a]

In our case we keep only those integers that are not divisible by the prime p. Of course,
there are infinitely many of these, but this does not bother us because we will never
need to compute all of them. The predicate notdiv is implemented in the where clause.
It performs division modulo and compares the result to zero using the inequality2
operator /=. In Haskell you can use a two-argument function in infix notation if you
surround it with inverted single quotes, as we did here with the function mod.

By applying the anamorphism to this coalgebrasieveweget amap[Int]-> Stream Int.
That is, from an infinite list of integers we generate an infinite stream. In particular,
from the list [2..], we generate the list of prime numbers:

primes = ana sieve [2..]

If you want to display this stream, you’d probably want to convert it to a list first. This
can be done using an algebra. That’s because Stream a is not only a terminal coalgebra
but also an initial algebra.

Exercise 4.25. Implement a function that converts a Stream to an (infinite) list

toList :: Stream a -> [a]

Hint: Implement an algebra

2In many programming languages this operator is encoded as !=.
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alg :: Algebra (StreamF a) [a]

and apply a catamorphism to it. ♦

In order to display some primes, use the function take which truncates the (possibly
infinite) list down to a chosen size.

Prelude> take 10 (toList primes)

[2,3,5,7,11,13,17,19,23,29]

This pattern of applying a catamorphism immediately after an anamorphism is
common enough to deserve its own function called a hylomorpshism.

hylo :: Functor f => Algebra f a -> Coalgebra f b -> b -> a

hylo f g = f . fmap (hylo f g) . g

Haskell Note 4.26. In many cases the use of a hylomorphism results in better perfor-
mance. Since Haskell is lazy, the data structure that the algebra consumes is generated
on demand by the coalgebra. The parts of the data structure that have already been
processed are then garbage collected, freeing the memory to be used to expand new
parts of it. This way it’s possible that the complete data structure is never materialized
in memory and its structure serves as a scaffolding for directing the flow of control.
It’s often easier to imagine a flow of control as a data structure, rather than a network
of mutually recursive function calls.

Exercise 4.27 (Merge sort). Implement merge sort using a hylomorphism. Here’s the
idea: The seed (the carrier of the coalgebra) is the list to be sorted. Use this function

split :: [a] -> ([a], [a])

split (a: b: t) = (a: t1, b: t2)

where

(t1, t2) = split t

split l = (l, [])

to split the list into two lists and use them as new seeds. Make sure you deal correctly
with empty lists.

The carrier of the algebra is again a list (this time it’s actually a sorted list, but this
cannot be reflected in the type). Your partial results are sorted lists. You combine them
using this function.
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merge :: Ord a => [a] -> [a] -> [a]

merge (a: as) (b: bs) =

if a <= b

then a : merge as (b: bs)

else b : merge (a: as) bs

merge as [] = as

merge [] bs = bs

Make sure your program also works for empty lists (it should return an empty list).
♦

4.7 Fixed points in Haskell

So far we’ve been using the same Fix type constructor to generate both the initial
algebras and terminal coalgebras. One could argue that Fix generates greatest fixed
points, so it can be legitimately used to generate terminal coalgebras, but how can it be
used to also generate initial algebras? We’ve seen that, in many categories, including
Set, the carriers of initial algebras are not necessarily the same as those of the terminal
coalgebras for the same functor, see Proposition 4.22. The intuition is that initial
algebras describe finite data structures like lists or trees, whereas terminal coalgebras
include infinite data structures like streams or infinite trees.

Let’s look at a simple example. Let’s implement a geometric sequence with a ratio
a. To that end, we define a stream of Double using the following coalgebra

geomCoa :: Double -> Coalgebra (StreamF Double) Double

geomCoa a x = StreamF x (a * x)

Here x is the current seed. We set the seed for the tail of the stream to be a * x.
Applying the anamorphism to this coalgebra we can generate an infinite sequence,

a geometric progression:

geom :: Double -> Stream Double

geom a = ana (geomCoa a) 1

But how about using the same fixed point as an initial algebra? We’ve seen before that,
in Set, the initial algebra for the pair functor is empty. But here’s an example of an
algebra for this functor.

toListAlg :: Algebra (StreamF a) [a]

toListAlg (StreamF a as) = a : as
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for which we can implement a catamorphism from Fix (StreamF a)

toList :: Stream a -> [a]

toList = cata toListAlg

This works, because of Haskell’s laziness. This catamorphism converts one lazy
data structure to another lazy data structure and, as long as we don’t try to demand it
all at once, we can look at bits of it. For instance, we can compose it with take 10 to
retrieve the first ten elements.

But here’s another algebra that ads the head to the tail of the stream:

sumAlg :: Algebra (StreamF Double) Double

sumAlg (StreamF a s) = a + s

In Haskell we can implement a catamorphism for this algebra:

-- don't run it!
sumAll = cata sumAlg

This catamorphism calculates the sum of the infinite series. It’s a legitimate Haskell
function. It compiles and runs. Granted, if you try to print or pattern-match the
result, it will run forever, but this is the price of doing business in any Turing complete
language. This function “returns” an element of the type Double—the bottom, ⊥.

With this caveat, in Haskell, the same fixed point combinator Fix generates initial
algebras and terminal coalgebras. However, it’s also possible to encode the two fixed
points, the least one and the greatest one, separately.

4.7.1 Implementing initial algebras by universal property

Once again, the trick is to use the universal property directly. The initial algebra can
be defined by its mapping out property.

{-# language RankNTypes #-}

newtype Mu f = Mu (forall a. (f a -> a) -> a)

This definitionworks because for every least fixedpoint one candefine a catamorphism,
which can be rewritten as

cata :: Functor f => Fix f -> (forall a . (f a -> a) -> a)

cata (Fix x) = \alg -> alg (fmap (flip cata alg) x)
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Haskell Note 4.28. The function flip simply reverses the order of arguments of its
(function) argument.

flip :: (a -> b -> c) -> (b -> a -> c)

flip f b a = f a b

What the definition of Mu is saying is that it’s an object that has a map to the carrier
a of any algebra f a -> a; that map is of course the catamorphism.

It’s easy to define a catamorphism in terms of Mu, since Mu is quite literally the very
essence of catamorphism

cataMu :: Functor f => Algebra f a -> Mu f -> a

cataMu alg (Mu cata) = cata alg -- cata :: forall a. (f a -> a) -> a

The challenge is to construct terms of type Mu f. This is not as straightforward as
constructing terms of the type Fix f, but it’s feasible. For instance, let’s convert a list
of a’s to a term of type Mu (ListF a)

mkList :: forall a. [a] -> Mu (ListF a)

mkList as = Mu cata

where cata :: forall x. (ListF a x -> x) -> x

cata unf = go as

where

go [] = unf NilF

go (n: ns) = unf (ConsF n (go ns))

This Haskell code is a little tricky because we have to use the type a defined in the type
signature of mkList to define the type signature of the helper function cata. For the
compiler to identify the two, we have to use the pragma

{-# language ScopedTypeVariables #-}

This pragma extends the scope of the definition of a to the whole body of the function.
You can now verify that

cataMu myAlg (mkList [1..10])

produces the correct result for the following algebra

myAlg :: Algebra (ListF Int) Int

myAlg NilF = 0

myAlg (ConsF a x) = a + x
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4.7.2 Implementing terminal coalgebras by universal property

The terminal coalgebra, on the other hand, is defined by its mapping in property.
This requires a definition in terms of existential types. If Haskell had an existential
quantifier, we could write the following definition for the terminal coalgebra

data Nu f = Nu (exists a. (a -> f a, a))

When somebody gives you a value of an existential type, they guarantee that the type a
exists, without specifying what it is. They usually provide some way of working with
it. Here, you are given a function a->f a and some value of the type a. This situation
is somewhat familiar to object-oriented programmers. They are often given an object
that hides some data, but it provides “methods” that can be used to operate on it.

Existential types canbe encoded inHaskell using the so calledGeneralizedAlgebraic
Data Types or GADTs

{-# language GADTs #-}

data Nu f where

Nu :: (a -> f a) -> a -> Nu f

Again the idea is that for every greatest fixed point one can define an anamorphism

ana :: Functor f => forall a. (a -> f a) -> a -> Fix f

ana coa x = Fix (fmap (ana coa) (coa x))

We can uncurry it

ana :: Functor f => forall a. (a -> f a, a) -> Fix f

ana (coa, x) = Fix (fmap (curry ana coa) (coa x))

A universally quantified mapping out

forall a. ((a -> f a, a) -> Fix f)

is equivalent to a mapping out of an existential type (in pseudo-Haskell)

(exists a. (a -> f a, a)) -> Fix f

which is the type signature of the constructor of Nu f.
The intuition is that, if youwant to implement a function from an existential type—a

type which hides some other type a to which you have no access—your function has
to be prepared to handle any a. In other words, it has to be polymorphic in a.
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Since in an existential type we have no access to the hidden type, it has to provide
both the “producer” and the “consumer” for this type. Here we are given a value of
type a on the produces side, and the function a -> f a as the consumer. All we can
do is to apply this function to a to obtain the term of the type f a. Since f is a functor,
we can lift our function and apply it again, and get something of the type f (f a).
Continuing this process, we can obtain arbitrary powers of f acting on a. We get a
recursive data type.

An anamorphism in terms of Nu is given by

anaNu :: Functor f => Coalgebra f a -> a -> Nu f

anaNu coa a = Nu coa a

Notice however that we cannot directly pass the result of anaNu to cataMu because
it’s no longer obvious that the initial algebra is the same as the terminal coalgebra for
a given functor. A hylomorphism relies on the fact that, in Haskell, we can identify
initial algebras with terminal coalgebras.



Chapter 5

Monads

5.1 A teaser

Starting with the category of types and functions, it’s possible to construct new cat-
egories that share the same objects (types), but redefine the morphisms and their
composition.

A simple example is the categorywith the same types but only partial computations.
These are computations that are not defined for all values of their arguments. We can
model such computations using the Maybe data type.

data Maybe a = Just a | Nothing

A partial computation from a to b can be implemented as a regular old function

a -> Maybe b

When the partial computation succeeds, this function wraps its output in Just, other-
wise it returns Nothing. Most programming languages have some equivalent of Maybe
(often called option or optional), or use exceptions to implement partial computations.

What we are trying to do here is to create a new category that wewill callKl(Maybe).
This category has the same objects as Hask, but its morphisms are different. Let’s
denote morphisms in Kl(Maybe) using a tick f : a b. Then a morphism f : a b in
Kl(Maybe) is represented by a function f :: a -> Maybe b in Haskell.

To define a category, we have to define objects, morphisms, identities, and compo-
sition. We’ve already said we want our category to have the same objects as Hask and
the above sort of maybe morphisms. So let’s consider composition.

The issue is that two composable Kleisli morphisms f : a b and 1 : b c don’t
quite look composable when you unwind the definitions. They are represented by
morphisms f :: a -> Maybe b and g :: b -> Maybe c, and these aren’t directly
composable in Hask; the codomain of f isn’t quite the domain of g. Before we say how
to deal with this, let’s write out what we want, both mathematically and in Haskell.

125
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Mathematically, given f : a b and 1 : b c, we want something of type a c.
In Haskell, just like the usual sort of composition can be regarded as a function that
takes two functions as input

(.) :: (b -> c) -> (a -> b) -> (a -> c)

and produces their output, we need a function that takes two Kleisli morphisms and
produces their composite. That is we need something of the following type:

(<=<) :: (b -> Maybe c) -> (a -> Maybe b) -> (a -> Maybe c)

Here is a way we could implement this: if the first function returns Nothing, don’t call
the second function. Otherwise, call it with the contents of Just

g <=< f = \a -> case f a of

Nothing -> Nothing

Just b -> g b

If g and f are representatives of two composablemorphisms inKl(Maybe) then g <=< f
produces a representative of their composition. This Kleisli composition operator is
often called the fish. A Kleisli identity is called return.

Next we need an identity morphism. It is represented by

idMaybe :: a -> Maybe a

idMaybe a = Just a

We will see in Exercise 5.2 that this identity is indeed unital with respect to fish
composition and that the fish composition is also associative. Therefore Kl(Maybe) is
indeed a category; it’s called a Kleisli category for the functor Maybe. It’s a very useful
category that allows us to compose partial functions.

Proposition 5.1. There is a category Kl(Maybe) whose objects are sets, whose mor-
phisms a b are functions a → b + 1, whose identity ida : a a is the inclusion
ηa : a → a + 1, and for which the composite of f : a b and 1 : b c is given by

a
f
−→ b + 1

1+1
−−→ (c + 1) + 1 � c + (1 + 1) c+!−−→ c + 1

Proof. See Exercise 5.2. �

Exercise 5.2. Show that Kl(Maybe) is indeed a category by proving unitality and
associativity:

1. For any Kleisli morphism f : a b, one has f ◦ ida � f .
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2. For any Kleisli morphism f : a b, one has idb ◦ f � f .
3. For any three Kleisli morphisms f : a b, 1 : b c, and h : c d, the equation
(h ◦ 1) ◦ f � h ◦ (1 ◦ f ) holds.

♦

5.2 Different ways of working with monads

5.2.1 Monads in terms of the “fish”

This procedure of constructing a Kleisli category can be generalized to functors other
than Maybe, as long as we can generalize the notion of identities and composition used
above. What was it that made these definitions work?

It turns out that the laws that made Kl(Maybe) work as a category are captured in
the statement that the functor a 7→ a + 1 can be given the structure of amonad. Monads
are things that mathematicians did not know about before category theory, but they
formalize a great deal of structure, e.g. the notion of algebraic theory can be formulated
completely in terms of monads.

InHaskell, the Monad type class is defined in the Prelude, but the followingdefinition
using Kleisli arrows is equivalent

class Functor m => Monad m where

(<=<) :: (b -> m c) -> (a -> m b) -> (a -> m c)

return :: a -> m a

This says that any functor can be amonad, as long as you tell it what the fish and return
are.

In order for the Kleisli category to really be a category, these definitions need to
satisfy a couple laws. These laws would sure that the composition is associative and
also unital with respect to return. Luckily the laws are very easy to formulate: they are
just the laws of a category—associativity and unitality

-- one checks mentally that the following equations hold:

(h <=< g) <=< f = h <=< (g <=< f)

f <=< return = f

return <=< f = f

5.2.2 Monads in terms of join

Monads can also be defined in another, way more typical in mathematics.

Definition 5.3. Let C be a category. A monad on C consists of a tuple (M, η, µ) where
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M : C→ C is a functor, and η : idC → M and µ : M◦M → M are natural transformations

C C

idC

M

η

C

C C

MM

M

µ

such that the following diagrams commute:

M M ◦M M

M

M◦idC

µ

idC◦M M ◦M ◦M M ◦M

M ◦M M

M◦µ

µ◦M µ

µ

Example 5.4 (The List monad). In Haskell, we denote the type of a-lists by [a]; for the
math, let’s write List(A). That is, A is a set and List(A) � 1 + A + A2 + · · · is the set of
lists—of arbitrary finite length—for which every element is in A. It turns out that List
is the functor part of a monad on Set, namely (List, s , f )where s : idSet → List is called
singleton and f : List ◦ List→ List is called concatenate.

We saw that List is a functor in ??; it means that you can map any function, say
1 : A → B over a list of A’s to get a list of B’s with the same length; the function 1 is
applied to each spot.

To give a natural transformation, one first gives the components and then checks
that they satisfy the naturality condition. For any set A, we define sA : A→ List(A) to
be the function sending a ∈ A to the singleton list [a] ∈ List(A). This is natural because
for any function 1 : A→ B, the following commutes:

A B

List(A) List(B)

1

sA sB

List(1)

This says that starting with an element a ∈ A, one can either make the singleton list
and then map 1 over it or apply 1 directly and make the singleton list; the results in
both cases are the same. Thus we have given our natural transformation s.

Next we give f , the components and naturality of the concatenate transformation.
For any set A we define fA : List(List(A)) → List(A) to be the function sending a list of
lists of A’s to the concatenated list, e.g.

f ([[a1 , a2], [], [a2 , a3 , a1]]) � [a1 , a2 , a2 , a3 , a1].

The mathematics of the concatenate map are given in Exercise 5.5. It is natural because
for any function 1 : A → B and any list of lists, one can either concatenate it to a list
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and then map 1 over it, or map 1 over each individual list—in fact over each element
in each individual list—and then concatenate; the results in both cases are the same.

Now that we have our natural transformations s and f , the last thing to do is check
that the diagrams from Definition 5.3 commute. The first is actually two: it says that if
you start with a list ` and then singletonize every entry in it, or singletonize the entire
list—in each case getting a list of lists—and then concatenate, you get back where you
started. For example, start with [a , b , c]. Singletonizing each entry gives [[a], [b], [c]],
andwhen you concatenate you get back [a , b , c]. Similarly, singletonizing the entire list
gives [[a , b , c]] and when you concatenate you get back [a , b , c]. Thus the first diagram
commutes.

The second diagram says if you start with a list of lists of lists and then con-
catenate the first inner layer then the second inner layer, it’s the same as concate-
nating the second inner layer then the first inner layer. For example, starting with
[[[a , b], [a , c , c]], [[], [b , b]]], one can remove the innermost brackets toget [[a , b , a , c , c], [b , b]]
and then concatenating again [a , b , a , c , c , b , b]. This is the same as what you get by
removing the middle brackets first, [[a , b], [a , c , c], [], [b , b]] and then removing the
innermost brackets [a , b , a , c , c , b , b].

So List is a monad!

Exercise 5.5. The set List(A) is given by the following disjoint union of products:

List(A) B
∐
n∈N

An
�

∐
n∈N

∏
i∈n

A � An1 + A + A2
+ A3

+ · · ·

where An � A ×A × · · · ×A. Recalling that products distribute over coproducts—even
infinite coproducts—in Set,

A ×
∐

i

Bi �
∐

i

A × Bi

formally define the concatenate function List(List(A)) → List(A). ♦

Now let’s discuss how to think about this from a programming point of view. We
said that Maybe is a monad. Let’s abstract it and consider a functor m; what structures
does it have that make composition work right?

If f : a b and 1 : b c are Kleisli arrows, i.e. functions f :: a -> m b and
g :: b -> m c, how can we compose them? The first piece we need is that m is a
functor, i.e. it has an instance of fmap. Let’s start a program for the fish, leaving a hole
for what we don’t yet know:

g <=< f = \a -> let mb = f a -- f :: a -> m b, g :: b -> m c

mmc = fmap g mb -- (fmap g) :: m b -> m m c

in _ mmc -- not sure what to do with mmc yet
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After applying the fmap and composing, we got something of type m m c, whereas
we need something of the type m c. This happened with the Maybe monad too; in
Proposition 5.1 one can see that we first applied f , thenMaybe(1) � 1 + 1, and we were
left with something of type Maybe(Maybe(c)) � c + 1 + 1. Our next step was and again
is to find some function m (m a) -> m a; then we could implement the Kleisli arrow.
Hence we arrive at the definition of a monad given in Definition 5.3; in Haskell its parts
are:

class Functor m => Monad m where

join :: m (m a) -> m a

return :: a -> m a

We’ve already said that return is the Haskell name for what we called η; similarly join
is the Haskell name for µ. One can derive the laws for this definition from the laws for
the Kleisli definition, or again just see Definition 5.3.

Now we can finish the above definition

g <=< f = \a -> let mb = f a

mmc = fmap g mb

in join mmc -- join :: m m c -> m c

5.2.3 Monads in terms of bind

In the above definition of Kleisli composition, or the following even shorter description

g <=< f = \a -> join (fmap g (f a))

we used both join and fmap. Let’s rewrite it as a single function

bind :: m b -> (b -> m c) -> m c

bind mb g = join (fmap g mb)

This new function leads to yet another definition of Monad (with someminor renaming):

class Monad m where

(>>=) :: m a -> (a -> m b) -> m b -- this is `bind`
return :: a -> m a

The bind function is represented by an infix operator. This definition imposes no
Functor constraint because it turns out that fmap can be constructed from bind and
return. It is implemented as
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liftM :: Monad m => (a -> b) -> m a -> m b -- this is fmap

liftM f ma = ma >>= (\a -> return (f a))

At one time this was the official definition of Monad in Haskell, until the additional
constraint of Applicativewas added. We’ll discuss this more later in ??.

Just like we can extract fmap from bind, we can also extract join; indeed this is done
in the library Control.Monad:

join :: Monad m => m (m a) -> m a

join mma = mma >>= id

5.2.4 Monads in terms of the do notation

The bind operator takes a monadic value and applies a Kleisli arrow to it; for example
it takes a ma :: Maybe a and applies a partial function a -> Maybe b, or it takes a list
l :: [a] and applies a non-deterministic function a -> [b]. One can build programs
by composing Kleisli arrows and applying them to monadic values. This way one can
essentially develop point-free notation in the Kleisli category. But point-free notation
is often difficult to read, especially if Kleisli arrows are created inline using lambdas.
Look for instance at the definition of liftM; we could have made this even more point
free:

liftM1 f ma = ma >>= (\a -> return (f a)) --original

liftM2 f = (>>= (\a -> return (f a))) --using sections

liftM3 f = (>>= return . f) --using composition

liftM4 = flip (>>=) $ (return .) --fully point-free

This is slick and shows that liftM really uses nothing but the monad structures, but
again it is not generally considered easy to read liftM4, even for experts.

The do notation goes in the opposite direction, using variables to help us keep track
of the computation process in stages. It has a distinctly imperative look:

a <- ma

The left arrow notation suggests assignment, somehow extracting a from the monadic
argument ma. We’ll read it as “a takes from ma.” The extracted variable is usually later
used in the body of the do block. For example, here is liftMwritten in do notation

liftM f ma = do -- how do you apply f :: a -> b to ma?

a <- ma -- "a takes from ma"

return (f a) -- apply f to it
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A Haskell do block has an implicit monad; every line in the block will implicitly
involve that monad. The above code works for every monad, but some code works
only for a particular monad m, e.g. the following which only makes sense for the IO
monad:

main :: IO ()

main = do

putStrLn "Tell me your name"

-- _ <- putStrLn "Tell me your name"

name <- getLine

putStrLn ("Hello " ++ name)

All the lines of the do block have a similar structure, except for the last line. Indeed,
all but the last line has the form newvar <- ma, where ma :: m a and newvar :: a.
Sometimes newvar is dropped from the notation and one simply writes ma; this occurs
when its value is of no consequence and will never be used again, i.e. it is implicitly
_ <- ma. In particular, in the case of unit type a = (), the value is never of any
consequence, since () has only one value. Finally, the last line is of the form m x, the
type of the whole do block.

One can see these rules at work in the do code for liftM on page 131. Let’s take a
closer look in the case of main just above by first checking the types:

Prelude> :t putStrLn

putStrLn :: String -> IO ()

Prelude> :t getLine

getLine :: IO String

Since getLine :: IO String, we must have that name :: String by our rules above;
this is why we can append name to "Hello ".

Here’s yet another example, saying for every pair of monadic values there is a
monadic pair:

pairM :: Monad m => m a -> m b -> m (a, b)

pairM ma mb = do

a <- ma -- "a takes from ma"

b <- mb -- "b takes from mb"

return (a, b) -- return the pair

Here’s what it does on lists:

prelude> pairM [1,2,3] ["a", "b"]

[(1, "a"),(1,"b"),(2, "a"),(2,"b"),(3, "a"),(3,"b")]
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The comments in quotes, e.g. -- "a takes from ma" represent a surprisingly useful
fiction for thinking about these lines. If m is a monad and a is a type, it doesn’t quite
make mathematical sense to take values from some ma :: m a. But when m is the list
monad or the Maybe, IO, or any other monad, this fiction does not seem to misguide us.
Still, it will be grounding for us to know what is actually happening behind the scenes
when we strip off the syntactic sugar from a do block.

What’s reallyhappening in adoblock Tobegin, let’s reiterate thepatternof code indo
blocks: every line but the last is implicitly of the form newvar <- mawith newvar :: a
and ma :: ma for some a, and the last line is of the form m x, which is the type of the
whole do-block.

Here’s how you de-sugar this into a series of binds and lambdas. First take every
non-last line newvar <- ma and rewrite it as ma >>= \newvar; leave the last line as it
is.

For example, following this procedure, the above pairM functionwould be rewritten
as follows:

pairM ma mb = -- do

ma >>= \a -> -- a <- ma

mb >>= \b -> -- b <- mb

return (a, b) -- return (a, b)

This isn’t just a composite of binds >>=; it’s an intricately nested structure. It involves
a function a -> m b -> m (a, b), which is known as a strength for the functor m.

strengthM :: a -> m b -> m (a, b)

strengthM a mb = do

b <- mb

return (a, b)

Although it seems to use bind, it actually is just liftM = fmap; see the code on page 131
and also Exercise 5.6. Going back to pairM, we’re given mb :: m b so we get a map
a -> m (a, b), and then we can bind that one to ma, obtaining the desired result.

Exercise 5.6. Let f be a functor.
1. Load {-## Language TupleSections ##-} and find the type of \a -> (a,).
2. Use it to construct a map a -> f b -> f (a, b).
3. Explain why it does the same thing as StrengthM.

♦

The point is that do blocks are quite easy to read by thinking of imperative style
programming: do this, then do this, etc. But behind the scenes there’s a lot of theory
at work!
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5.2.5 Monads and effects

The introduction by EugenioMoggi ([Moggi]) ofmonads into functional programming
was prompted by the need to provide semantics to functions that have side effects. A
function f : A → B simply takes every element of A to an element of B; what does it
mean tohave it basedonuser input, or tohave it display somethingwhile it’s processing,
or to have it use a random number generator or some internal state? All of these things
can beused in normal programming languages, so functional programmers felt left out!
Of course, they had purity on their side, which came with the ability to reason about
their programs in ways that others couldn’t. But by introducing monads, functional
programmers could rejoice because now they had nothing to envy from imperative
programmers.

Here are some of the effects that are important in programming but can’t be directly
modeled as pure functions.

• Partiality: Computations that may not terminate
• Exceptions: Partial functions that may fail in various ways
• Nondeterminism: Computations that may return many results
• Side effects: Computations that access/modify state

– Read-only state, i.e. a file with parameters for this run of the program
– Write-only state, i.e. a log in which to record data about this run
– Read/write state, i.e. variables that can be used or modified at any time

• Continuations: computations on programs with fixed output type
• Interactive Input and output

It turns out that each of them can be implemented as Kleisli arrows for an appropriate
monad. The monad for partial functions is Maybe, which we’ve discussed above: a
Kleisli arrow a -> Maybe b is a partial function from a to b. In fact, this is a special
case of an exceptions monad.

Let’s look at some of these.

5.3 Examples of monads

5.3.1 The exceptions monads

Let E be a set. There is a functor Set→ Set sending X 7→ X + E. For example, if E � 1
then this functor adds a single new element to any set. It’s a functor because for any
function f : X → Y, there is an induced function f + E : X + E→ Y + E that takes any
element a ∈ X + E and applies f if a ∈ X and applies idE if a ∈ E.

To make this into a monad, we need to give a unit (return) ηX : X → X + E and
multiplication (join) µX : X+E+E→ X+E. Themap ηX is just the coproduct inclusion,
sending any element of x to itself x 7→ x, and themap µX sends x 7→ x and any element
of E, whether it’s in the first or second component, to itself e 7→ e.

In Haskell, this monad would look as follows:
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data Exception e a = Just a | Exception e

instance Functor (Exception e) where

fmap f (Just a) = Just (f a)

fmap f (Exception e) = Exception e

instance Monad (Exception e) where

(Just a) >>= f = Just (f a)

(Exception e) >>= f = Exception e

return a = Just a

5.3.2 The list monad and nondeterminism

A computation that may return more than one possible output for the same input
can be represented in Haskell by returning a list of outputs for each input; let’s call
these non-deterministic functions. When composing two nondeterministic functions
we want to apply the second non-deterministic function to every possible outcome of
the first non-deterministic function. Let’s have the identity function be deterministic,
i.e. produce one output; this is represented by a singleton list. We discussed this
mathematically in Example 5.4. In code, we have

instance Monad [] where

as >>= k = concat (fmap k as)

return a = [a]

Exercise 5.7. Write a function concat that concatenates a list of lists into a list

concat :: [[a]] -> [a]

♦

Now that we know that [] is a monad, we can use do-notation. The following
program produces a cartesian product of two lists using the do notation for the list
monad

pair :: [a] -> [b] -> [(a, b)]

pair as bs = do

a <- as

b <- bs

return (a, b)
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Prelude> pair [1,2,3] ["a","b"]

[(1,"a"),(1,"b"),(2,"a"),(2,"b"),(3,"a"),(3,"b")]

Prelude> do a <- [1,2,3]; b <- ["a", "b"]; return (a,b)

[(1,"a"),(1,"b"),(2,"a"),(2,"b"),(3,"a"),(3,"b")]

5.3.3 The writer monads

Recall that a monoid is a set M together with an element e ∈ M and a binary operation
(∗) : M × M → M, such that e ∗ m � m � m ∗ e and m ∗ (n ∗ p) � (m ∗ n) ∗ p for all
m , n , p ∈ M. For any monoid (M, e , ∗), there is an associated monad on Set. It sends
each set X to the set M × X. This is functorial: given f : X → Y, there is an obvious
map (M × f ) : (M × X) → (M × Y). It is a monad because it has a natural unit (return)
and multiplication (join).

In Haskell this is called the writer monad (for M). The idea is that a Kleisli arrow
X Y is a function X → M × Y; it takes an x ∈ X and outputs both an element of M
and an element of Y. Think of the element of M as an entry in a log file; for example if
M is the set of strings, e is the empty string, and multiplication is just concatenation of
strings. When composing Kleisli arrows, we concatenate the log entries, adding a new
line to the file.

data Writer m a = Writer m a

deriving Functor

Recall that a monoid in Haskell is something that has implemented the above unit
and multiplication as above, though they are called mempty and mappend, also written
(<>). Here’s the implementation:

instance Monoid [a] where -- for example String = [Char]

mempty = [] -- unit = empty string

(<>) = (++) -- mult = concatenate strings

instance Monoid m => Monad (Writer m) where

(Writer m a) >>= k = Writer (m <> m') a'

where Writer m' a' = k a

return a = Writer mempty a

Exercise 5.8.
1. Implement a Monoid instance for Int.
2. Would it make sense to use Writer Int to keep track of time spent?
3. Would it make sense to use Writer Int to keep track of number of cores used?
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♦

5.3.4 The reader monads

Writer monads and reader monads sound analogous, but are they really? The writer
monad is parameterized by a choice of monoid—like strings under concatenation—
whereas the reader monad is parameterized only by a choice of set or type, like the
three-element set {A, B, C} or A | B | C. Whereas the writer monad repeatedly ap-
pends more and more information into something like a log file; the reader monad
never changes the file being read from.

The reason things are so different—at least in Set—is a reflection of a certain asym-
metry that’s a bit surprising at first. We just reviewed the definition of monoid; let’s
put a formal definition in parallel with the dual notion, that of comonoid. Recall that a
category C has finite products iff it has a terminal object 1 and for every pair of objects
c , d ∈ C, there is a product c ← c × d → d. The categories Set and Hask have finite
products.

Definition 5.9. Let C be a category with finite products.

A monoid in C consists of a tuple
(c , η, µ), where c ∈ C is an object, and
η : 1 → c and µ : c × c → c are func-
tions making the follwing diagrams
commute:

A comonoid in C consists of a tuple
(c , ε, δ), where c ∈ C is an object, and
ε : c → 1 and δ : c → c × c are func-
tions making the following diagrams
commute:

c × 1 c × c 1 × c

c c c

c×η

� µ

η×c

�

c × 1 c × c 1 × c

c c c

c×ε ε×c

� δ �

c × c × c c × c

c × c c

c×µ

µ×c µ

µ

c × c × c c × c

c × c c

c×δ

δ×c δ

δ

But here’s the surprise: whereas monoids abound—for example a set with three
elements has seven monoid structures (see https://oeis.org/A058129)—comonoids
do not. Each object has exactly one comonoid structure, no matter what!

Proposition 5.10. Let C be a category with finite products. Then for every object c ∈ C
there is exactly one comonoid structure possible on c.

https://oeis.org/A058129
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Proof. There is only one function c → 1 by definition of 1 being terminal, so ε is fixed;
it remains to show that δ is too. We first want to see that the functions c × ε and ε × c,
followed by the isomorphisms c × 1→ c and 1 × c → c, must be the usual projections
c × c → c; we leave this to the reader in Exercise 5.11. But now δ must be the diagonal
δ � (c , c) by the universal property of products. �

Exercise 5.11. Show that if (c , ε, δ) is a comonoid, then the functions c × ε and ε × c,
followed by the isomorphisms c × 1→ c and 1 × c → c, must be the usual projections
c × c → c. ♦

The notion of comonoid seems to be pointless! In fact, we will soon discuss
monoidal categories, of which categories with finite products are special cases. In
general monoidal categories, there can be non-trivial and interesting comonoids. But
it’s true that forwhereweare in this chapter, the notionof comonoid seems todisappear.

Yet there was a point in bringing it up. The apparent asymmetry between the writer
monad and the reader monad is not that one requires a monoid and the other doesn’t
require anything, it’s that one requiresmonoids and the other requires comonoids. The
symmetry and analogy betweenwriter and reader is in full force; there’s just something
deeper going on with the math.

In the remainder of this section on the reader monad, one can watch for uses of the
functions ε : c → 1 and δ : c → c × c; while they are easy to hide because they’re part
of the basic structure of a category with products, they are there behind the scenes.
Whenever the elements of c are discarded, we’re using ε, and whenever the elements
of c are duplicated, we’re using δ.

Definition 5.12 (Reader monad). Let C ∈ Set be a set. There is a functor sending a set
X to XC, the set of functions C → X; on a morphism f : X → Y, it sends a function
C → X to its composite with f to get a function C → Y. This functor −C : Set → Set
is part of a monad, called the reader monad on C. The unit (return) ηX : X → XC sends
x 7→ (c 7→ x).a The multiplication (join) µX : (XC)C → XC sends a function f : C→ XC

to the function c 7→ f (c)(c).b

aThe element c ∈ C is discared here.
bThe element c ∈ C is duplicated here.

One can think of a Kleisli arrow f : x y for the reader monad on C as being
parameterized by a file c ∈ C: what f does depends on what’s in c. The return does
not use the file, and the composition of Kleisli arrows uses duplication to ensure that
we’re using the same file c for each arrow.

Let’s get to some code.

newtype Reader c a = Reader (c -> a) -- c is the input file type

deriving Functor
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runReader :: Reader c a -> c -> a -- drop the data constructor

runReader (Reader f) c = f c -- for later convenience

It’s easy to define the reader functor; it’s just a little more involved to give its return
and bind. But again we’ll see duplication and discarding of the input file.

instance Monad (Reader c) where

ra >>= k = Reader f

where f c = (runReader k (runReader ra c)) c -- duplicate c

return a = Reader (\_ -> a) -- discard c

Exercise 5.13. Give an example of a program that uses the reader monad, written in do
notation. For full credit, it should be a program that doesn’t just work for any monad,
but instead only makes sense for the reader monad. ♦

5.3.5 The state monads

For every type s (or set S) there is a state monad, where states are terms of type s. For
example, suppose every time you run a function, you’re allowed to look in your virtual
notebook, see what was the last thing you wrote there, and use it in your calculations;
you’re also allowed to add a new entry to your notebook. The type of each entry in
your notebook is s.

The way we just described it, a Kleisli morphism f : A B would be a function
f � ( fB , fS) : A × S → B × S: it takes in an input a ∈ A and also an element s ∈ S (the
“current state”) and returns an output fB(a , s) ∈ B as well as a “new state” fS(a , s).

But Kleisli morphisms f : A B are supposed to go from A to M(B) for some
monad M. To fit our map A × S → B × S into that form, we curry the S, to give
A→ (B × S)S. The S-state monad has B 7→ (B × S)B as its underlying functor. Here it
is in Haskell.

newtype State s a = State (s -> (a, s))

deriving Functor

runState :: State s a -> s -> (a, s) -- drop the data constructor

runState (State f) s = f s -- for later convenience

instance Monad (State s) where

sa >>= k = State (\s -> let (a, s') = runState sa s



140 CHAPTER 5. MONADS

in runState (k a) s')

return a = State (\s -> (a, s))

Exercise 5.14. Give an example of a program that uses the state monad, written in do
notation. For full credit, it should be a program that doesn’t just work for any monad,
but instead only makes sense for the state monad. ♦

5.3.6 The continuation monads

For any type r (or set R) we can imagine working within a program where everyone
knows the goal is to get an r at the end. It’s like amazewhere you’reworking backward:
you’re always thinking about the places fromwhich you can get to the exit r. If someone
talks about a function from A to B in this context, everyone knows that they really are
trying to say “if you can exit from B, this function will let you exit from A”.

The way we described it, a Kleisli morphism f : A B would be a function RB →
RA: it takes a function B → R, i.e. way to exit from B, to a function A→ R, which is a
way to exit from A.

But Kleisli morphisms f : A B are supposed to go from A to M(B) for some
monad M. To fit ourmap RB → RA into that form, we uncurry to get amap A×RB → R
and thenflip and curry to obtainA→ R(R

B). TheR-continuationsmonadhasB 7→ R(R
B)

as its underlying functor.

data Cont r a = Cont ((a -> r) -> r)

runCont :: Cont r a -> (a -> r) -> r -- drop the data constructor

runCont (Cont k) h = k h -- for later convenience

Exercise 5.15. Show that for any set R ∈ Set, the map sending B 7→ R(R
B) is functorial.

This can be done in math style, or by writing an implementation of fmap for Cont r.
♦

instance Monad (Cont r) where

ka >>= kab = Cont (\hb -> runCont ka (\a -> runCont (kab a) hb))

return a = Cont (\ha -> ha a)

Exercise 5.16. Give an example of a program that uses the continuations monad,
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written in do notation. For full credit, it should be a program that doesn’t just work for
any monad, but instead only makes sense for the continuations monad. ♦

5.3.7 The IOmonad

For better or for worse, the most important monad in Haskell is probably IO. It’s
something of a blessing, in that it’s the monad that makes Haskell competitive in an
ecosystem of other programming languages. In a purely functional language there is
not input or output. Consider the function getLine, which is supposed to get a line
of input from the user. If this were a pure function, it would always return the same
string. This is clearly wrong, so we need something to get input and output into the
picture. It’s a blessing that the IOmonad let’s input and output back into the picture.

But it’s also something of a curse, because the IOmonad is not really a monad! It’s
implemented deep within the compiler of Haskell, not in the standard way. One can
imagine it (though again it’s not and could not be implemented this way) as a kind
of state monad, where the state in question is the state of the entire rest of the world
outside the program. From this point of view, when getLine takes input from the user
and uses it in the program, it’s really reading the entire state of the world and using
that. And when putLnStr provides output to the user, it’s really updating the entire
state of the world, a state that doesn’t change except for the way it is affected by the
program. This fiction is in some sense bizarre, but it is solid enough to have as our
model.

One way to think about how Haskell deals with input and output is that it creates
a long strategy for what it will output and what it will do with each sort of input. It
then postpones input and output until after the program—which is a pure function—is
executed. A Haskell program produces a detailed set of instructions for the runtime
to execute: to access the input devices, produce output, connect to the internet, write
to disk, etc. This set of instructions, or strategy, is encapsulated inside the programs
use of IO. Every Haskell program contains main, which is of type IO (), where () is
of course unit type. We call it an IO object because it has no other data. It is declared as

main :: IO ()

This IO object is produced by your program and is executed by the runtime. Since IO
is a monad which is baked deep into the language, you can create a value of the type
IO () either directly using return or by composing smaller IO-producing functions.
Here’s the simplest, do-nothing program

main :: IO ()

main = return ()

A slightly more interesting program produces IO () by calling a library function
putStrLn to display a string followed by a newline
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main :: IO ()

main = putStrLn "Hello World!"

The important baked-in definitions like putStrLn, getLine, getCharhave the following
types, and anything more complicated can be composed, either using bind, or the do
notation from simple IO-functions like the following:

putStrLn :: String -> IO ()

getLine :: IO String

getChar :: IO Char

The IO monad is peculiar in that it is not implemented from anything simpler that
you can take apart. It thus provides no way of accessing its contents.

For instance, to get a character of input, you would use getChar, but there is no
way to bring this quasi-Char into the open inside your program as a real Char. You
can manipulate your quasi-Char by applying fmap to it; indeed IO, like every monad,
is also a functor. Or you could bind it to a Kleisli arrow and get another IO object. But
you can never retrieve a bare Char out of it. There is no morphism IO Char -> Char
that extracts the Char as input.

Exercise 5.17. TThere is nomorphism IO Char -> Char that extracts the Char as input,
but there are certainly morphisms of that type. Write one. ♦

The do notation may give you the impression that you can access a string name in
the program we saw on page 132:

main :: IO ()

main = do

putStrLn "Tell me your name"

name <- getLine

putStrLn ("Hello " ++ name)

but as we saw in ??—when we discussed what’s really going on in a do block—that
name is just a name of the argument to a lambda function that will produce another IO
object.

Exercise 5.18. Write aHaskell program in do notation of type Int -> IO Int that takes
an integer, and prompts the user for whether it should be displayed and then zeroed
out or not. If so, it outputs the integer and then returns 0. If not, it outputs “ok” and
returns the integer as is. ♦
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Monoidal Categories

6.1 Lax Monoidal Functors

Exercise 6.1. Show that the category 1 equipped with the obvious tensor product is
the terminal object in MonCat ♦

Exercise 6.2. Show that a lax monoidal functor from the monoidal category 1 to the
category of endofunctors [C, C]with functor composition as the tensor product defines
a monad. ♦

6.1.1 Monad as Applicative

A functor lets you lift a function

fmap :: (a -> b) -> (f a -> f b)

It doesn’t, however, let you lift a function of two variables. What we would like to see
is

lift2 :: (a -> b -> c) -> f a -> f b -> f c

Granted, a function of two variables, in the curried form, is just a function of a single
variable returning a function. If we look at the first argument as

a -> (b -> c)

we could fmap it over the second argument f a to get

f (b -> c)

143
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But we are stuck now, because we don’t know how to apply a function inside a functor
to an argument inside a functor. For that we need a new capability, for which we will
define an infix operator

(<*>) :: f (a -> b) -> f a -> f b

We can then implement lift2 as

lift2 fab fa fb = fmap fab fa <*> fb

We won’t need parentheses if we define this operator to be right associative. There is
also an infix operator <$> that is a synonym for fmap, which lets us write lift2 in an
even more compact form

lift2 fab fa fb = fab <$> fa <*> fb

Notice that this is enough functionality to lift a function of any number of variables,
for instance

lift3 fabc fa fb fc = fabc <$> fa <*> fb <*> fc

With one more function called pure we can even lift a function of zero variables, in
other words, a value

pure :: a -> f a

Altogether we get a definition of an applicative functor

class Functor f => Applicative f where

(<*>) :: f (a -> b) -> f a -> f b

pure :: a -> f a

Everymonad is automatically an applicative functor. They share the samepolymorphic
function a -> f a under two different names, and for every monad we have the
implementation of ap, which has the same type signature as <*>

ap :: Monad m => m (a -> b) -> m a -> m b

ap mab ma = do

f <- mab

a <- ma

return (f a)
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In principle, one could use a monad as an applicative with a slightly more awkward
syntax: using ap instead of <*> and return instead of pure. It was enough of a
nuissance, though, that a decision was made to include Applicative as a superclass of
Monad, which brings the applicative names <*> and pure into the scope of the monad.
This is the official definition of a Monad copied from Control.Monad

class Applicative m => Monad m where

(>>=) :: forall a b. m a -> (a -> m b) -> m b

(>>) :: forall a b. m a -> m b -> m b

m >> k = m >>= \_ -> k

return :: a -> m a

return = pure

The operator (>>) is used when the result of the first action is not needed. It is, for
instance, used in desugaring the do lines that omit the left arrow (see example in the
description of the IOmonad).

In Haskell, an Applicative functor is equivalent to a lax monoidal functor. This is
the Haskell definition of the latter

class Functor f => Monoidal f where

unit :: f ()

(>*<) :: f a -> f b -> f (a, b)

Indeed, starting with an Applicative, we can implement unit as

unit = pure ()

and >*< as

fa >*< fb = fmap (,) fa <*> fb

Conversely, given a Monoidal functor we can implement

ff <*> fa = fmap (uncurry ($)) (ff >*< fa)

where the apply operator ($) is defined as

($) :: (a -> b) -> a -> b

f $ a = f a

and

pure a = fmap (\() -> a) unit
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6.2 Strength and enrichment

We include this section here, even though it requires some things we’ll get to later. Do
not be worried if you don’t understand everything for now.

In Example 3.47 we explained that Haskell functors are somehow less than true
functors because they need not preserve identity and composition. But in another
sense they aremore thanmere functors: they are strong and enriched. While we cannot
explain that fully at the moment, we can give the flavor.

In a category like Set, objects are sets but also for every two objects there is again a
set of morphisms: the collection of morphisms between two objects is again an object.
But for an arbitrary category C, the collection of morphisms between objects c , d is just
a set, not an object of C. A category of the first kind is called closed: the collection of
morphisms from c to d is again an object, which we can denote dc . It is sometimes
called the function type or exponential object.

So Set is closed; in fact it is Cartesian closed which means that it also has finite
products and there is a relationship:

Set(b , dc) � Set(b × c , d)

This is called the Currying adjunction and we’ll get to it soon. Hask is also Cartesian
closed: it has products and function types satisfies the same equation. That is, there
is an isomorphism between Haskell functions of the type b -> (c -> d) and those of
the type (b, c) -> d.

Functors F : C → D between arbitrary categories need to send morphisms to mor-
phisms, i.e. elements of the set C(c1 , c2) to elements of the set D(Fc1 , Fc2). That is, we
get a function Fc1 ,c2 : C(c1 , c2) → D(Fc1 , Fc2). But if D � C and it is Cartesian closed,
then wemight ask Fc ,c′ to be a morphism in C itself! That is, we want it to be a morphism
Fc1 ,c2 : cc1

2 → (Fc2)Fc1 .
This is implicitlywhat is goingonwhenwewritefmap :: (a -> b) -> (f a -> f b).

The function fmap is not just a set-theoretic way of sending each term of type a -> b
to a term of type f a -> f b, but a function written in Haskell, a morphism in the
category Hask.

In a cartesian closed category C, enrichment and strength are the same thing. What
is strength? A functor F : C → C is called strong if, for every c , c′ there is a natural
morphism c × F(c′) → F(c × c′), called the strength. By uncurrying, the strength is
equivalent to amap c → F(c×c′)F(c′), and so if F is enriched thenwe just need a function
c → (c′ × c)c′, and we get that by currying the identity. Conversely, given a strength
we need a function cc1

2 → (Fc2)Fc1 . This is equivalent to a function cc1
2 × Fc1 → Fc2;

to obtain it we just use the composite cc1
2 × Fc1 → F(cc1

2 × c1) → F(c2), where the first
map is the strength and the second is application of F on the evaluation morphism
cc1

2 × c1 → c2.
Again, none of this is too important for now. It’s “enrichment” for those who want

it. But we thought it was worth discussing because one may hear that all functors in
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Haskell are strong, and it is good to know that this condition is equivalent to asking that
theyare enriched, i.e. that there is anaturalmapof typefmap :: (a -> b) -> (f a -> f b).





Chapter 7

Profunctors

7.1 Profunctors revisited

In the early days of category theory, people talked of two different kinds of functors
C → D: covariant and contravariant. Both kinds send objects and morphisms of
C to objects and morphisms of D, but contravariant ones flip the direction of every
morphism. But this way of thinking was not very useful in practice. A contravariant
functor from C to D is just a covariant functor Cop → D which is just the same as
a covariant functor C → Dop. It’s more convenient if every time we draw an arrow
between categories, it always indicates the same type of thing, namely a (covariant)
functor. And who’s to say whether C or Cop is the “preferred one”, i.e. whether a
functor Cop → D should be thought of as contravariant (out of C) or as covariant (out
of Cop).

This works for functors with multiple arguments too. If you have a functor that
takes two objects or morphisms from category C and returns an object or morphism
from category D, you might want to call it a bifunctor. But technically, we just make
think of it as a regular old functor C × C→ D whose domain happens to be a product
category. See the arrow between categories? It always means regular old functor.

However, while the above is more suited for mathematics, we run into a familiar
theme when it comes to Haskell. The fact that Haskell never looks beyond itself—
everything’s about Hask, every “functor” goes from Hask to Hask—means that we
very well knowwhether Hask or Haskop is the preferred one! If we see a functor out of
Haskop, that’s contravariant, silly! And a functor Hask ×Hask→ Hask is a bifunctor,
you silly Copernicus person!

Well so be it. This course is mainly about Haskell, but it’s suppose to set it in a
broader context, so we need to be comfortable with both ways of thinking. In fact, if
you are going to spend most of your time in Haskell land, it really does make sense to
think of certain functors as covariant and others as contravariant.

Sometimes in category theory, the most interesting sorts of things are the most
mundane, the overlooked obvious. And one such case is that of the Hom functor.

149
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Exercise 7.1. A classmate comes up and says “did you know know that for every
category C, the homs form a functor to Set?” She goes on to explain that it’s a functor
hom: Cop × C→ Set.

1. What are the objects of Cop × C?
2. Given an object of Cop × C, she’s saying that you can take hom of it and get a set.

What set is it?
3. Given two objects in Cop × C, what is a morphism between them?
4. Given such amorphism in Cop×C, your classmate is saying that there’s a function

from hom of the first to hom of the second. What is it?
5. Does hom as you’ve now given it on objects and morphisms respect identities

and composition?
♦

The hom-functor is a very special case of something called a profunctor. Profunc-
tors generalize important notions you may hear bandied about in category theory
communities, terms like presheaf and copresheaf. But what are they?

Definition 7.2. Let C and D be categories. A presheaf on C is a functor Cop → Set.
A coprehseaf on D is a functor D → Set. And a profunctor P from C to D, denoted
P : C D, is just a functor

P : Cop ×D→ Set.

It’s kinda funny that the name “copresheaf” sounds more complicated, but that the
concept is a little easier, having no op involved. We’ll see some justification for that later
when we talk about the Yoneda embedding, but in some sense it’s really just the result
of a historical accident. Namely in the geometric contexts where these notions first
came up, people tended to find presheaves more commonly than copresheaves.

Example 7.3. LetC be any category and c ∈ C an object. Then F B C(c ,−) is a copresheaf:
it assigns a set F(c1) to every object c1 ∈ C and a function F(1) : F(c1) → F(c2) to every
morphism 1 : c1 → c2. Namely, F(c1) is the set of maps C(c , c1); it’s a set, right? And
given 1, we assign F(1) : C(c , c1) → C(c , c2) to be the function that sends f : c → c1 to
1 ◦ f .

The copresheafC(c ,−) is said to be represented by c. Similarly, the presheafCop → Set
represented by c is C(−, c).

Example 7.4. Let E be the category whose objects are street-intersections in a certain
city. A morphism c → c′ is a route that a car is allowed to take from c to c′. We could
take F : E → Set to assign F(e) to be the set of ways that a person can get from the
central train station to e. This includes all routes, not just car. Now given a morphism
1 : e → e′, i.e. a car route, we get a function F(e) → F(e′): if one has a way to get from
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the central station to e, then by taking a car along the final leg to their journey, they
have a way to get to e′.

Example 7.5. Let C � • → • be the walking arrow category. For any sets A, B and
function f : A→ B, we can think of f as a copresheaf C→ Set.

Anyway, why do we say that profunctors generalize presheaves and copresheaves?
It mainly comes down to the fact that if 1 denotes the one-object, one morphism (just
identity) category, then for any category Cwe have

1 × C � C � C × 1. (7.6)

Exercise 7.7. Use the isomorphisms in (7.6) to justify the statements:
1. a presheaf on C is just a profunctor from to
2. a copresheaf on D is just a profunctor from to .

♦

Let’s give a glossary of the above terms in the form of Haskell code; much of this
was already covered in Chapter 2, but we recall it for your convenience.

Remember that to implement a functor Hask→ Hask, one gives a type constructor
and then says how it is an instance of the type class Functor by defining fmap:

class Functor f where -- in Haskell, functors are covariant

fmap :: (a -> b) -> (f a -> f b)

If you want to define a contravariant functor Haskop → Hask, it’s just a different
type class all together

class Contravariant f where

fmap :: (b -> a) -> (f a -> f b)

In Haskell, most contravariant functors are constructed from function types since
hom-functors are contravariant in the first argument.

Exercise 7.8. Give an example of a contravariant functor in Haskell.
1. Give the type constructor.
2. Implement fmap.

♦

Moving on, if you want to implement a bifunctor, i.e. a two-argument covariant
functor, you give the type constructor and you implement something called bimap:
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class Bifunctor f where

bimap :: (a -> a') -> (b -> b') -> (f a b -> f a' b')

Important examples of bifunctors are products and coproducts; see Section 3.4.3.
Finally, if you want to implement a profunctor in Haskell, i.e. a mixed variance

functor Haskop × Hask → Hask, you give the type constructor and you implement
something called dimap.

class Profunctor p where

dimap :: (a' -> a) -> (b -> b') -> (p a b -> p a' b')

Asmentioned above, profunctors canbe seen as a generalization of the hom-functors
your classmate told you about in Exercise 7.1. In [SevenSketches], a profunctor was
described as a bridge between two categories, as though adding in morphism-like-
things between objects in two different worlds. In the case of the hom-profunctor for
C, the objects live in the same world (C), but that’s a special case. But the reason we say
it’s as though a profunctor P : Cop ×D→ Set provides morphism-like-things between
objects in C and objects in D is that if x ∈ P(c , d) is a morphism-like-thing from c to
d, and f : c′ → c and 1 : d → d′ are real morphisms in C and D, then we can do a
compose-like-operation to get a morphism-like-thing P( f , 1)(x) from c′ to d′. When
you get used to it, this really feels like composition, and in the special case that P is the
hom-functor, it is.

An alternative viewpoint is that profunctors generalize relations between sets. We
can think of a relation, like “greater than >” , as a predicate on a pair of objects: if
elements are related in this way, the predicate returns true; if they’re not, it returns
false. Instead of thinking in terms of true/false or black/white, we are sometimes
interested in witnesses or proofs that the relationship holds; this might be called the
Curry-Howard perspective. Instead of assigning a Boolean to a pair of objects, we can
assign a whole set of witnesses. If the set of witnesses is empty, the two objects are
deemed unrelated. But in general, we may want to keep track of all the witnesses to a
relationship. Now if we wanted to say “if Alice witnesses that c is related to d, then for
any map c′ → c, we want Alice to bear witness to the fact that c′ is related to d. This
idea is nicely expressed by a Set-valued profunctor.

Exercise 7.9. Suppose that X and Y are sets; we can consider them as discrete categories
X and Y (Example 1.35). Is it true that there is a one-to-one correspondence between
relations R ⊆ X × Y and profunctors P : X Y? Explain. ♦

Profunctors provide profound proficiency to the programming professional. In-
deed, many Haskellers have heard of lenses. In the coming sections, we’ll explain this
relatively new and very valuable programming paradigm.



7.2. ENDS AND COENDS 153

7.2 Ends and Coends

Definition 7.10 (Wedge). Given a profunctor P : C C, i.e. a functor P : Cop×C→ Set,
a wedge over P consists of a set x, together with a function

αc : x → P(c , c)

for every c ∈ C, such that all these functions together satisfy the wedge condition: for
every morphism f : c → d in C, the following diagram commutes:

x

P(c , c) P(d , d)

P(c , d)

αc αd

P(ida , f ) P( f ,idb)

(7.11)

We denote this wedge by (x , α), where α denotes the whole family of functions.

Definition 7.12 (End). Given a profunctor P : C C, an end is a universal wedge over
P, i.e. a wedge (end, π) such that, for every other wedge (x , α) over P there is a unique
function h : x → end such that for every c ∈ C the following diagram commutes

x

end

P(c , c)

αc

h

πc

(7.13)

We usually use following integral notation for ends

end(P) �
∫

c∈C
P(c , c),

with the “integration variable” c at the bottom of the integral sign.

Example 7.14 (Natural transformations as end). An important example of an end is the
set of natural transformations between two functors F,G : C→ D:

Nat(F,G) �
∫

c∈C
D(Fc ,Gc).

What’s going on here? First of all, we need to see that there’s a wedge, and second we
need to see that it’s universal.

But before we can do that, we need to say what the profunctor is. Just following our
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nose from (7.13), we seeD(Fc ,Gc) in the place of P(c , c), so we surmise thatD(F−,G−)
is a profunctor. You can check that it is in Exercise 7.15.

So let Nat(F,G) be the set of natural transformations. Is it a wedge overD(F−,G−)?
To say so, we need to give a function compc : Nat(F,G) → D(Fc ,Gc) for every c ∈ C.
Let’s say q : F→ G is a natural transformation; that means that for every c ∈ Cwe have
a component qc : F(c) → G(c), and that these are natural in the appropriate sense. So
what should wemake compc(q) : D(Fc ,Gc) be? Let’s make it be compc(q) B qc . You can
check that this definition satisfies the required commutativity of (7.11) in Exercise 7.16.

Now we need to see that this wedge is actually universal. In some sense, this is
true just because the definition of wedge in this case is a rephrasing of the definition
of natural transformation. To actually prove it, one takes an arbitrary wedge (x , α),
constructs a function h : x → Nat(F,G), shows that h satisfies the property (7.13), and
finally shows that h is unique with respect to this. We leave this to you in Exercise 7.17.

Exercise 7.15. Let C,D be categories and F,G : C → D be functors. Check that
P B D(F−,G−) is a profunctor, by answering the following.

1. What does P : Cop × C→ Set do on objects?
2. What does P do on morphisms?
3. Does P preserve identities and compositions? ♦

Exercise 7.16. For any natural transformation q : F → G, let compc(q) B qc as in
Example 7.14. Show that for any f : c → d in C, the following diagram commutes:

Nat(F,G)

D(Fc ,Gc) D(Fd ,Gd)

D(Fc ,Gd)

compc compd

D(idFc ,G( f )) D(F( f ),idGd)

♦

Exercise 7.17. Let F,G : C→ D be functors and let (x , α) be a wedge for the profunctor
D(F−,G−).

1. Construct a function h : x → Nat(F,G).
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2. Show that for every c ∈ C, the following diagram commutes:

x

Nat(F,G)

D(Fc ,Gc)

αc

h

compc

3. Show that h is unique with respect to that property. ♦

The mapping in property of an end can be expressed as

Set
(
x ,

∫
c

P(c , c)
)
�

∫
c
Set

(
x , P(c , c)

)
This is a very useful property that is used in many derivations.
The end is defined by its mapping in property and, in many ways, it is similar to a

product. It also has a dual, a coend, which behaves more like a coproduct. We define
a co-wedge

Definition 7.18 (Co-wedge). Given a profunctor P : Cop ×C→ Set, a co-wedge is a set
x equipped with a family of functions parameterized by a, an object of C

αa : P(a , a) → x

satisfying the co-wedge condition, which states that, for every pair of objects a and b
in C and a morphism 1 : b → a, the following diagram commutes

P(a , b)

P(a , a) P(b , b)

x

P(ida ,1) P(1 ,ida)

αa αb

A coend satisfies a mapping-out universal condition

Definition 7.19 (Coend). Given a profunctor P : Cop × C→ Set, a coend is a universal
co-wedge, that is a co-wedge (coend, ι) such that, for every other co-wedge (x , α) there
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is a unique function h : coend→ x such that the following diagram commutes

P(a , a)

coend

x

ιa

αa h

A coend is also written as an integral, but this time with the object at the top of the
integral sign

coend �

∫ a∈C

P(a , a)

The mapping out property if the coend is expressed as

Set
( ∫ c

P(c , c), x
)
�

∫
c
Set

(
P(c , c), x

)
Notice that the coend on the left hand side becomes the end on the right hand side.

7.3 Profunctors in Haskell

class Profunctor p where

dimap :: (a' -> a) -> (b -> b') -> (p a b -> p a' b')

The simplest example of a profunctor is the hom-functor which, in Haskell, is repre-
sented by the arrow type constructor ->. This is how it lifts a pair of functions (one of
them going in the opposite direction)

instance Profunctor (->) where

dimap f g h = g . h . f

An end is represented by a data structure whose data constructor End takes a polymor-
phic object that can be seen as an infinite tuple (product) of all the diagonal elements of
a given profunctor. Here, we write it as a GADT, in anticipation of the dual definition
of a coend

data End p where

End :: (forall a. p a a) -> End p

The following language pragmas are needed for this definition to work

{-# language RankNTypes #-}

{-# language GADTs #-}
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A projection extracts one particular diagonal element of the profunctor from an end

piEnd :: End p -> p a a

piEnd (End paa) = paa

The universal property of the end can be summarized by two sides of an isomorphism.
Given a type x and a family of projections alpha there is a unique function from x to
End p

end :: Profunctor p => (forall a. x -> p a a) -> (x -> End p)

end alpha x = End (alpha x)

Conversely, given a mapping from some x to End p, we can generate all the projections
from x by precomposing it with the projections from End p

unend :: Profunctor p => (x -> End p) -> (forall a. x -> p a a)

unend h = piEnd . h

The set of natural transformations between two functors can be represented by an end
of the following profunctor

data NatP f g a b = NatP (f a -> g b)

instance (Functor f, Functor g) => Profunctor (NatP f g) where

dimap f g (NatP h) = NatP (fmap g . h . fmap f)

type Nat f g = End (NatP f g)

GeneralizedAlgebraic Data Types orGADTs can be used to encode existential types.
In pseudo Haskell we would write the definition of a coend as

type Coend p = exists a. p a a

Using GADTs we can write it as

data Coend p where

Coend :: p a a -> Coend p

The idea is that any type that occurs in thedefinition of thedata constructor but is absent
from the definition of the type constructor is automatically treated as an existential.
Here, a is such a type.

Just like the end had projections, a coend has injections
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inCoend :: Profunctor p => p a a -> Coend p

inCoend paa = Coend paa

You can generate a term of the type Coend p by providing a single diagonal element of
the profunctor. This is analogous to being able to generated a term of the Either type
by injecting just one of the components of the coproduct.

The universal mapping-out property is described by the pair of functions that form
an isomorphism. The first one says that, given a type x and a polymorphic family of
functions from all the diagonal elements of the profunctor p, there is a unique function
from Coend p to x

coend :: Profunctor p => (forall a. p a a -> x) -> (Coend p -> x)

coend f (Coend paa) = f paa

The other says that, given a function from Coend p to x, we can obtain a whole poly-
morphic family of injections by postcomposing it with the coend injections

uncoend :: Profunctor p => (Coend p -> x) -> (forall a. p a a -> x)

uncoend h = h . inCoend

In all this discussion we never mentioned the (co-)wedge conditions. Should we
assume that those have to be checked independently on a case-by-case basis, as it
was with, say, monad laws? It turns out that (co-)wedge conditions are automatically
satisfied due to parametricity.

7.4 Category of profunctors

Profunctor composition

(P ◦Q)(a , b) �
∫ c

P(a , c) ×Q(c , b)

Analogous to composition of relations. There exists a c that is related to a through
P and to b through Q. The proof of this relation is a pair of proofs, hence cartesian
product of sets.

Yoneda lemma, given a functor F : C→ Set

Nat(C(x ,−), F) � Fx

Expressing the set of natural transformations as an end∫
c

Set
(
C(x , c), Fc

)
� Fx
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Ninja co-Yoneda ∫ c

C(c , x) × Fc � Fx

Proof using Yoneda embedding

Set
( ∫ c

C(c , x) × Fc , s
)
�

∫
c

Set
(
C(c , x) × Fc , s

)
We can now use the product/exponential adjunction or currying to get∫

c
Set

(
C(c , x), sFc )

We can perform the “integration” over c using the contravariant version of the Yoneda
lemma to get sFx . Finally, we know that in Set the exponential is isomorphic to the
hom-set Set(Fx , s). We get

Set
( ∫ c

C(c , x) × Fc , s
)
� Set(Fx , s)

Yoneda lemma then tells us that the representing objects must be isomorphic∫ c

C(c , x) × Fc � Fx

With this result in hand, we can evaluate profunctor composition in which one of
the profunctors is the hom-functor

(p ◦ C(−,−))ab �

∫ c

pac × C(c , b) � pab

The hom-functor is therefore the right identity of profunctor composition. Similarly,
using the contravariant version of the co-Yoneda identity, we can prove that it is also a
left identity.

As a sanity check, let’s see what we get when we use profunctor composition
to compose two hom-functors. Indeed, we get the formula that’s compatible with
morphism composition ∫ c

C(a , c) × C(c , b) � C(a , b)

For every pair of composable morphisms, there is a unique composite morphism.
Notice that left and right identities for profunctor composition are not equalities but

(natural) isomorphisms. There is also an isomorphism that asserts the associativity of
the profunctor composition. So we almost have a category, except that the laws are
satisfied up to isomorphism. Such a category is called a bicategory.
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7.4.1 Category of profunctors in Haskell

data ProCompose p q a b where

ProC :: p a c -> q c b -> ProCompose p q a b

instance (Profunctor p, Profunctor q) => Profunctor (ProCompose p q)

where

dimap f g (ProC pac qcb) = ProC (dimap f id pac) (dimap id g qcb)

Ninja Yoneda

data YoP f x a b = YoP ((x -> a) -> f b)

instance Functor f => Profunctor (YoP f x) where

dimap g h (YoP k) = YoP (\xa' -> fmap h (k (g . xa')))

Alternative encoding of (f x)

type Yo f x = End (YoP f x)

If we expand the components of this isomorphism, we get the equivalence of two types

forall a. ((x -> a) -> f a) ~ f x

In other words, the data type f x can be encoded as a higher order polymorphic
function. This is easy to see if you consider that you can call this function with an
identity function as an argument (choosing a equal to x). The function then returns a
value of the type f x

f2yo :: forall a. ((x -> a) -> f a) -> f x

f2yo f = f id

Continuation passing style as Yoneda for the identity functor

forall a. ((x -> a) -> a) ~ a

Very common in web programming and in building compilers.
Conversely, if we are given a value of the type f x, we can construct a polymorphic

function
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yo2f :: f x -> forall a. ((x -> a) -> f a)

yo2f fx = \h -> fmap h fx

You can easily convince yourself that these two functions are the inverse of each other.
Ninja co-Yoneda

data CoYoP f x a b = CoYoP (a -> x) (f b)

instance Functor f => Profunctor (CoYoP f x) where

dimap g h (CoYoP k fb) = CoYoP (k . g) (fmap h fb)

Alternative encoding of (f x)

type CoYo f x = Coend (CoYoP f x)

Expanding it, we get the equivalence of types (pseudo Haskell)

exists a. (a -> x, f a) ~ f x

The only thing you can do with the left hand side is to fmap the function over f a and
get a value of the type f x. Conversely, given an f x value, you can create a pair

(id, f x)

7.5 Day convolution

Given two functors F,G : C→ Set, their Day convolution is defined as

(F ?G)x �

∫ (a ,b)
Fa × Gb × C(a ⊗ b , x)

Unit with respect to Day convolution

Jx � C(I , x)

where I is the unit with respect to the tensor product.
Let’s plug it into the definition of Day convolution

(F ? J)x �

∫ (a ,b)
Fa × C(I , b) × C(a ⊗ b , x)
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A coend over a pair of objects is equivalent to a double coend over individual objects1,
one of which can be immediately performed to produce∫ a

Fa × C(a ⊗ I , x)

We can now use the unit law and perform the integration over a to get

(F ? J)x � Fx

The proof of left identity is analogous.

Exercise 7.20. Show that Day convolution is associative up to isomorphism. ♦

It follows that Day convolution defines amonoidal structure in the category of functors
from amonoidal category C to Set. Any time we have a monoidal structure it’s natural
to ask aboutmonoidswith respect to that structure. Here, amonoidwould be a functor
F : C→ Set equipped with two natural transformations

µ : F ? F→ F

η : J → F

satisfying the monoid laws. Let’s expand the first definition. The component of the
natural transformation µ is a member of the set of natural transformations, which can
be expressed as an end∫

x
Set

(
(F ? F)x , Fx

)
�

∫
x

Set
( ∫ (a ,b)

Fa × Fb × C(a ⊗ b , x), Fx
)

Co-continuity of the hom-set gives us∫
x

∫
(a ,b)

Set
(
Fa × Fb × C(a ⊗ b , x), Fx

)
Using the Yoneda lemma, we can integrate over x to get∫

(a ,b)
Set

(
Fa × Fb , F(a ⊗ b)

)
To every natural transformation µ there corresponds a natural transformation

Fa × Fb → F(a ⊗ b)

Similarly, expanding the definition of η we get∫
x

Set(C(I , x), Fx) � FI

Taken together with monoid laws, we get the definition of a lax monoidal func-
tor.

Proposition 7.21. Given a monoidal category C, a monoid in the monoidal category of
functors from C to Set with Day convolution is a lax monoidal functor.

1This is called the Fubini theorem for coends
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7.5.1 Day convolution in Haskell

The formula for Day convolution can be directly translated to Haskell using an exis-
tential data type (here, encoded as a GADT)

data Day f g x where

Day :: f a -> g b -> ((a, b) -> x) -> Day f g x

7.6 Optics

7.6.1 Motivation

The need for optics arose from practical considerations, first in database applications,
then in functional programming. In both domains, we have to deal with deeply nested
data structures that cannot be modified in place (in database world, any modification
has to be transacted). Read-only access to deeply nested data structures is not a
problem, but modifications require some more thought. In principle, if you want to
mutate even the smallest part of a large data structure, you should make a fresh copy
of it, and incorporate the change as part of its construction. This is not only ineffective,
but also requires a lot of bookkeeping.

The performance of this type of modification can be drastically improved by using
persistent data structures, which are specifically designed for functional programming.
Since pure functions never modify the data after it’s been constructed, large portions
of data structures can be transparently shared rather than copied. Garbage collection
then takes care of deallocating unused portions.

In imperative programming, you can traverse a data structure keeping track of
current position in a single pointer, and then perform a mutation in place using that
pointer. In functional programming, you have to keep track not only of the location,
but also howyou got there, in order to be able to reassemble themutated data structure.
These generalized pointers are called optics, since they focus on a particular part of a
data structure—lenses being the most basic ones.

In category theory, optics provide a way of peering inside objects. Normally, we
treat objects as indivisible primitives, but in a monoidal category we have to option of
composing objects using the tensor product. If objects can be composed, then it makes
sense to ask if they can be decomposed back into their constituents. We know we can
do this with cartesian products by using projections. We can also do it with coproducts
using pattern matching. But, in general, a tensor product has no special mapping out
property. Granted, a mapping out of any object provides us with some information
about its structure, but how do we distinguish between mappings that focus on a
subobject and the ones that don’t? The real test is in being able to recompose the object
from its constituent parts. This is why all optics come with pairs of mappings: one
extracting the current focus, and one putting the new focus back.
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7.6.2 Tensorial optics

The general idea of optics is that you can decompose an object (data structure) into
the focus and the residue. You’re not interested in the residue, other than it can be
recombined with the (possibly different) focus. This idea is described categorically as
the following construction—an optic parameterized by four objects

Ostab �

∫ c

C(s , c ⊗ a) × C(c ⊗ b , t)

Wecan read it as: there exists a residue c such that there is amorphism that decomposes
the source s into a tensor product of the focus a and this residue. The other morphism
takes amodified focus b and recomposes it with the residue to produce the target object
t.

The way a and c are put together is purposefully kept vague, we just assume that
there is a tensor product in some monoidal category C. We can then specialize this
definition to the case of the cartesian product and coproduct and try to simplify the
result.

7.6.3 Lens

For instance, substituting a product for the tensor product, we get

Lstab �

∫ c

C(s , c × a) × C(c × b , t)

This can be simplified using the mapping in property of the product∫ c

C(s , c) × C(s , a) × C(c × b , t)

We can now use the co-Yoneda lemma applied to the following functor

Fc � C(s , a) × C(c × b , t)

This results in replacing c with s in the rest of the expression

C(s , a) × C(s × b , t)

An element of this set is a pair of morphisms

get : s → a

set : s × b → t

The interpretation is that get lets you extract the focus from the source and set replaces
the focal part of s with a new object b to produce the target t. This pair of morphisms
is known as a lens.
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7.6.4 Lens in Haskell

Here is a lens encoded in Haskell

data Lens s t a b = Lens { get :: s -> a

, set :: (s, b) -> t }

As an example, lets implement a lens that focuses on the right side of a pair.

pLens :: Lens (c, a) (c, b) a b

pLens = Lens get set

where

get :: (c, a) -> a

get (_, a) = a

set :: ((c, a), b) -> (c, b)

set ((c, _), b) = (c, b)

7.6.5 Prism

Substituting a coproduct for the tensor product in the definition of the optic leads to
the following derivation

Pstab �

∫ c

C(s , c + a) × C(c + b , t)

The coproduct has the mapping out property, so we can replace this with∫ c

C(s , c + a) × C(c , t) × C(b , t)

Rearranging the terms and using the co-Yoneda lemma to eliminate C(c , t), we end up
with

C(s , t + a) × C(b , t)

A pair of morphisms

match : s → t + a

build : b → t

is called a prism. The idea is that match tries to extract the focus a but it may fail, in
which case it returns a t. build creates the target t by injecting b into it.
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7.6.6 Prism in Haskell

In Haskell, we would encode it as

data Prism s t a b = Prism { match :: s -> Either t a

, build :: b -> Either t b }

For instance, consider the simple case where s is a sum type Either c a and t is
Either c b.

ePrism :: Prism (Either c a) (Either c b) a b

It you’re given a term Right a, match should return a. Given a term Left c, it
should recode it as the term of the Left c of the type Either c b

ePrism = Prism match build

where

match :: Either c a -> Either (Either c b) a

match (Right a) = Right a

match (Left c) = Left (Left c)

build :: b -> Either c b

build = Right

7.7 Profunctor optics

When dealing with nested data structures, we have to be able to compose optics. The
focus of one lens may be decomposable using another lens. The composition of two
gets is easy, it’s just function composition. But the composition of two sets requires
some fiddling around.

Exercise 7.22. Create a lens Lstab as apair ofmorphisms get and set that is a composition
of Lstuv and Luvab, also given in terms of get and set. ♦

With this composition, lenses (and, similarly, prisms) can be considered arrows
in a category whose objects are pairs of objects in C. There is, however, a better
representation of optics in which composition is very simple—it’s just the composition
of morphisms in C. It’s the profunctor representation.

7.7.1 Tambara modules
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Definition 7.23. Let C be a monoidal category. A Tambara module is a profunctor
P : Cop × C→ Set equipped with a family of functions

αc ,a ,b : P(a , b) → P(c ⊗ a , c ⊗ b)

satisfyingappropriatenaturality conditionsa, andwhich is compatiblewith themonoidal
structure on C.

aα must be natural in a and b and dinatural in c

Let’s analyze this definition using the interpretation of profunctors as proof-relevant
relations. If object a is related to b then, for any object c, the Tambara condition tells us
that a combined with c is related to b combined with c. Such a relation is “focused” on
a and b, in the sense that it’s not broken by embedding those two objects in a common
context provide by c.

Moreover, because of functoriality, this relation gets automatically extended to all
objects that have a mapping to the source and a mapping out from the target of the
profunctor.

For instance, if the set P(a , b) is non-empty, then the set P(c ⊗ a , c ⊗ b) is non-empty
and, if there is a pair of morphisms f : s → c ⊗ a and 1 : c ⊗ b → t, then the set P(s , t) is
also non-empty, because there is a function P( f , 1) ◦ αc ,a ,b that maps P(a , b) to P(s , t).

The totality of such relations that are compatible with a particular tensor product—
or the Tambara modules for this monoidal category—form a category. Morphisms in
that category are natural transformations that preserve the Tambara structure.

Let’s now turn the argument around. Let’s pick a pair of objects a and b and another
pair s and t. We will now vary the profunctors over the whole Tambara category. If
it so happens that every time a is related to b it follows that s is related to t, then we
can deduce that, secretly, there must be a bridge between the two pairs. In particular,
there must exist a c and a pair of morphisms f : s → c ⊗ a and 1 : c ⊗ b → t. In other
words, we must have∫

P∈Tamb
Set(P(a , b), P(s , t)) �

∫ c

C(s , c ⊗ a) × C(c ⊗ b , t)

The right hand side turns out to be the existential representation of an optic. The left
hand side is an end in the category of Tambara modules. What’s important is that it’s
just a family of functions between sets. As such, they can be composed using function
composition.

The whole argument can be made precise with the use of the Yoneda lemma in the
profunctor category.

7.7.2 Profunctor optics in Haskell

Since in Haskell we have two monoidal structures defined by the product and the
coproduct, we candefine two types of Tambaramodules. They are knownas Cartesian
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and Cocartesian or, in the Date.Profunctor library, as Strong and Choice. Here’s
one possible definition

class Profunctor p => Cartesian p where

alpha :: p a b -> p (c, a) (c, b)

class Profunctor p => Cocartesian p where

coalpha :: p a b -> p (Either c a) (Either c b)

We’ve seen that Tambara optics can be defined as an end over Tambara modules. In
Haskell, an end is expressed as a universally qualified data type. Therefore, a lens can
be defined as

type Lens s t a b = forall p. Cartesian p => p a b -> p s t

type Prism s t a b = forall p. Cocartesian p => p a b -> p s t



Index

filter, 118

bicartesian, 44

cartesian category, 43
cartesian closed category, 58
catamorphism, 105
Church encoding, 26
comments, xiii
compositionality, 1

existential types, 123

function, 4

generalized element, 95
global element, 94
global element , textbf39

hylomorphism, 119

inhabited type, 47

language pragmas, xiii

partial application, 61
pattern matching, 49
point free, 55
product, 40

sieve of Eratosthenes, 117

walking, 71
arrow, 72
isomorphism, 72

object, 71
walking arrow category, 15
wildcard pattern, 101

zero object, 40

169


	Preface
	Learning programming
	Installing Haskell
	Haskell points

	Acknowledgments

	Categories, Types, and Functions
	Programming: the art of composition
	Two fundamental ideas: sets and functions
	What is a set?
	Functions
	Some intuitions about functions

	Categories
	Motivation: the category of sets
	The definition of a category
	Examples of categories
	Thinking in a category: the Yoneda perspective

	Categories and Haskell
	The lambda calculus
	Types
	Haskell functions
	Composing functions
	Thinking categorically about Haskell


	Universal constructions and the algebra of types
	Constructing datatypes
	Universal constructions
	Terminal objects
	Initial objects
	Products
	Coproducts

	Type constructors
	Type constructors
	Unit and void
	Tuple types
	Sum types

	Exponentials and function types
	Interlude: Distributivity
	Exponential objects
	Function types, and currying in Haskell


	Functors, natural transformations, and type polymorphism
	Relationships, relationships, relationships
	Functors
	Definition
	Examples of functors
	Functors and shapes
	The category of categories

	Type classes
	Polymorphism in Haskell
	Defining type classes and instances

	Functors in Haskell
	The HaskellFunctor type class
	First examples of functors in Haskell
	Bifunctors
	A first glance at profunctors

	Natural transformations
	Definition
	Natural transformations in Haskell

	Bonus: Representable functors and the Yoneda embedding

	Algebras and recursive data structures
	The string before the knot
	What you can do with recursive data types
	Algebras
	Initial algebras
	Lambek's lemma

	Recursive data structures
	Returning to expression trees
	The essence of recursion
	Algebras, catamorphsims, and folds

	Coalgebras, anamorphsims, and unfolds
	The type of streams, as a terminal coalgebra
	The stream of prime numbers

	Fixed points in Haskell
	Implementing initial algebras by universal property
	Implementing terminal coalgebras by universal property


	Monads
	A teaser
	Different ways of working with monads
	Monads in terms of the ``fish''
	Monads in terms of join
	Monads in terms of bind
	Monads in terms of the Haskelldo notation
	Monads and effects

	Examples of monads
	The exceptions monads
	The list monad and nondeterminism
	The writer monads
	The reader monads
	The state monads
	The continuation monads
	The HaskellIO monad


	Monoidal Categories
	Lax Monoidal Functors
	HaskellMonad as HaskellApplicative

	Strength and enrichment

	Profunctors
	Profunctors revisited
	Ends and Coends
	Profunctors in Haskell
	Category of profunctors
	Category of profunctors in Haskell

	Day convolution
	Day convolution in Haskell

	Optics
	Motivation
	Tensorial optics
	Lens
	Lens in Haskell
	Prism
	Prism in Haskell

	Profunctor optics
	Tambara modules
	Profunctor optics in Haskell


	Index

