Causal Models: Drawing on Category Theory

Ed Wike
MIT Category Theory Seminar
November 19, 2018
Agenda

- Project Overview
- Relevance and Interests
- Causal Models Overview
- Category Theory Framework
- Python Software Approach
- Demo – Pilot Version
- Next Phase - Programming
- Applicability and Benefits
Project Overview

- In May, Brendan Fong gave a talk on "Causal theories: a categorical approach to Bayesian networks."
- Based on Brendan's masters thesis, "Causal Theories: A Categorical Perspective on Bayesian Networks".
- This thesis generalizes and expands upon Bayesian Networks using category theory.
- Causal inference is an important topic in analytics.
- Today's talk is about a software project to automate the modeling methodology and see what it can do.
- We will see a demo of an early version of this program.
- Then we will discuss plans for a more robust version and some ideas to explore.
Relevance and Interests

• Causal modeling is increasingly important in the analytics world.
 • Ongoing debate between 'empiricism' and 'innate domain'.
 • Concerns about implicit bias and disparate impact of models
 • Lack of transparency and the need for explainability of models

• Personal interests and experience:
 • Math, operations research (MIT,1998), analytics, consulting
 • Category theory and applied category theory (+ analytics)
 • Modeling and data science experience
 - RMBS – prepayment, default, house price models
 - Mortgage lead generation - purchase, refinance, home equity
 - Customer retention models, marketing, fraud detection
 - Consumer credit, property, demographic, economic data
 • Network diagram programming for workflow scheduling models
Causal Models

- Example – Wet Grass
 \[P(AB) = P(A)P(B|A) \]

- Bayesian Network
 - Network (DAG) depiction of causal relationships
 - Nodes and arcs represent conditional probabilities
 - Intuitive interpretation of causal paths through network
 - Widely used for causal modeling and inference
 - Scalability – driven by conditional probability table
 - Key concept – conditional independence
 - More on conditional probability...
Conditional Probability

- Example: Random variables X (values 1, 2, 3) and Y with values (1,2)

- Joint probability table of X,Y and marginal probabilities X and Y:

```
<table>
<thead>
<tr>
<th>Probability</th>
<th>X=1</th>
<th>X=2</th>
<th>X=3</th>
<th>Y Marginal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y=1</td>
<td>0.10</td>
<td>0.40</td>
<td>0.15</td>
<td>0.65</td>
</tr>
<tr>
<td>Y=2</td>
<td>0.10</td>
<td>0.10</td>
<td>0.15</td>
<td>0.35</td>
</tr>
<tr>
<td>X Marginal</td>
<td>0.20</td>
<td>0.50</td>
<td>0.30</td>
<td></td>
</tr>
</tbody>
</table>
```

- Dividing the joint probabilities of X,Y by the marginal probabilities for X:

```
<table>
<thead>
<tr>
<th>Prob (Y</th>
<th>X)</th>
<th>X=1</th>
<th>X=2</th>
<th>X=3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y=1</td>
<td>0.50</td>
<td>0.80</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td>Y=2</td>
<td>0.50</td>
<td>0.20</td>
<td>0.50</td>
<td></td>
</tr>
</tbody>
</table>
```

- The columns of this [Y|X] matrix sum to 1 (stochastic matrix)
- If X is distributed as (0.8, 0.1, 0.1), then left multiplying by [Y|X] = (0.53,0.47)
- If X is deterministic – e.g., (0,1,0) then left multiplying by [Y|X] = column 2
- If all columns of [Y|X] are ~ equal then X and Y are ~ independent.
Conditional Independence

- A fundamental feature of Bayesian Networks – d-separation - is defined in terms of conditional independence.
- Conditional Independence: \(X \perp\!\!\!\!\!\!\!\!\!\perp Y \mid Z \) iff \(\text{Prob}(X|Y,Z) = \text{Prob}(X|Z) \)

- Three important cases used in 'd-separation':
 - **Fork**: \(X \leftarrow Z \rightarrow Y \) Even if \(X, Y \) dep., then \(X,Y \) C.I. on \(Z \)
 - Example: \(X=\)Shoe Size, \(Z=\)Age of Child, \(Y=\)Reading Ability
 - **Collider**: \(X \rightarrow Z \leftarrow Y \) Even if \(X, Y \) ind., then \(X,Y \) C.D. on \(Z \)
 - Example: \(X=\)Tasty, \(Z=\)Choose to Eat, \(Y=\)Nutritious
 - **Chain**: \(X \rightarrow Z \rightarrow Y \) Even if \(X, Y \) dep., then \(X,Y \) C.I. on \(Z \)
 - Example: \(X=\)Fire, \(Z=\)Smoke, \(Y=\)Alarm
Causal Model Analysis

- Ladder of Causation (Pearl) – … 'do-calculus'
 - Counterfactual – What if we had done X?
 - Intervention – What if we do X?
 - Association – What if we see X?
- Causal Effect Analysis \([Y \| X]\) (Causal Conditional)
 - What is the conditional effect on variable Y from an ancestor variable X which is on the causal path to Y?

![Causal Model Diagram]

\(X\) \(\rightarrow\) \(A\) \(\rightarrow\) \(C\) \(\rightarrow\) \(Y\)
\(B\) \(\rightarrow\) \(D\)
Symmetric Monoidal Categories

- SMCs are categories* with a symmetric monoidal product
- Ideal for modeling serial and parallel processes
 - Serial processes using composition
 - Parallel processes using monoidal product
- For causal modeling we use
 - Serial for dependent causal relationships
 - Parallel for independent causal relationships
- Visualize as wiring (string) diagrams

* See the References slide.
Category Theory Framework

Causal Structure
DAG (V,A,s,t)

Causal Theory
(Hypothesis)
S.M.C.
(Syntax)

Modeling
Codomain
S.M.C.
(Semantics)

Nodes:
Symbols for variables

Arcs:
Causal relationships

Objects: Strings in V

Morphisms:
Causal mechanisms
Comonoid maps

Stoch (Lawvere):

Objects:
Measurable spaces

Morphisms:
Stochastic maps

Subcategories:
FinStoch
CGStoch

Set, Rel, ...

A
B
C

A
B
C

C | AB

Copy
Discard
Causal Theory → FinStoch Example

See slide 6 for more on stochastic matrices and conditional probability.
Causal Theory Models for Analysis

Chain
A → B → C

A
B| A
B
C| B
C

Fork
B ← A → C
A
A
B| A
C| A

Collider
A → C ← B
A
A
B| A
C| AB

Causal Conditional
T
T
B| T
idT
B
...R
Causal Theory Models

- Same functionality as Bayesian networks with...
- Visual representation of model variable relationships, but
- More functionality by being a monoidal category
- Causal graph generates factorization of joint probability
- Causal model analysis capability – ladder, causal effects
- Generalized for continuous as well as discrete cases
- Can model with any symmetric monoidal category
- Model functors → natural transformations & comparisons
- Scalability – driven by size of causal graph
- Software implementation - next
Python Software Approach

- Desired functionality
 - User-drawn causal structure graph design
 - Load external data; generate maps automatically*
 - DAG-driven computing for probabilities and causal analysis
 - Generate symmetric monoidal category wiring diagram 'view'
 - Expandable to continuous case
- Libraries selected
 - Numpy, Scipy – ndarray, Kronecker product, A@B...
 - Pandas* – Data Frame, Groupby, Pivot
 - PyQt – multi-platform User Interface library
 - PyQtGraph – 'Flowchart' module on top of PyQt

* Tech note – We are using 'pandas' to generate stochastic maps and matrices. These computations are coded to happen on the fly.
PyQtGraph: Flowchart Example

- Causal Graph flowchart view
- Nodes: Input, A, B, C, Output
- Terminals: dataIn, A, B, C, dataOut
PyQtGraph: Flowchart Features

- Users can model and draw their own causal graphs
- Causal graphs can be generated programmatically
- Arcs connect nodes through 'out' and 'in' terminals
- 1-to-many and many-to-1 connections are allowed
- Nodes can have multiple terminals
- Programmers can create their own node types by making:
 - A 'process' function that runs for each node in order
 - Optional user interface node widget in the control panel
- Any object can be transmitted via terminals
- Flowchart process can run with UI refresh or without
- Flowcharts are nodes and can be embedded in flowcharts
Next Phase – Causal Theory View

Automatically make the Causal Theory (SMC) flowchart from the Causal Graph.
Next Phase - Programming

- Implement new node types for Causal Theory (SMC) view
- Generate the Causal Theory view automatically
- UI improvements including graph and table widget node views
- More robust exception handling and testing
- Volume testing for scalability
- Testing standard data sets and real world examples
- Database query capability – SQL to Data Frame
- Continuous node types
- In parallel – consider alternatives to PyQtGraph
- In parallel – drawing wiring diagrams for general SMCs
Applicability

- Causal modeling (by design)
- Supervised learning (to try out)
- Modeling analysis – pre/post modeling
- Modeling with aggregate data (e.g., BI, DW, cubes)
- Combining models for implementation
- Ad hoc models for hypothesis generation
- 80/20 data exploration for insights
- Causal modeling of model errors
 - Causes for poor predictability under certain conditions
 - Causes of false positives and false negatives
 - Causes of model drift over time
References

Brendan Fong, "Causal Theories: A Categorical Perspective on Bayesian Networks".
Brendan Fong and David I. Spivak, Seven Sketches in Compositionality
Tom Leinster, Basic Category Theory
Judea Pearl, Causality: Models, Reasoning and Inference
Emily Riehl, Category Theory in Context
David I. Spivak, Category Theory for Scientists