Discrete temporal type theory

David I. Spivak

2018/04/26 at MIT CT seminar

I. Introduction

- A. Goal: a higher-order logic for behavior
 - 1. Continuous version (joint with P. Schultz, https://arxiv.org/abs/1710.10258)
 - a. ODEs, LTSs, delays
 - b. Combining disparate sorts of systems
 - c. A language for behavior contracts
 - 2. Discrete version
 - a. Simpler, but still quite rich
 - b. Kinda like: A higher-order logic for graphs
 - c. One can reason about restrictions on paths (e.g. "Whenever *g* traverses a blue edge, it must traverse two more consecutive blue edges within five hops.")
 - d. One can reason about "effects" of traversing longer paths, i.e. information which can't be reduced to what's observable on the edges.

B. Formal language

- 1. Very useful for defining and proving properties about behavior.
- 2. Higher-order logic with topos semantics works well.

C. Plan:

- 1. Describe the topos externally
- 2. Explain the type theory
- 3. Return to the above statement re: graphs

II. Topos of discrete behavior types $\mathcal{B}_{\mathbb{Z}}$

- A. Two presheaf toposes
 - 1. Geometric theory of discrete finite intervals
 - a. For each $d, u \in \mathbb{Z}$ with $d \le u$, a proposition " $d \le t \le u$ "
 - b. Axiom: $\vdash \bigvee_{d \le u} d \le t \le u$.

 $^{^{1}}$ "d is for down, u is for up"

- c. If $d' \le d \le u \le u'$ then $d \le t \le u + d' \le t \le u'$
- 2. Its syntactic category: a topological space \mathbb{IZ}
 - a. Points of \mathbb{IZ} are intervals [a, b] with $a \leq b$
 - b. Open subsets: $\{ \downarrow [d, u] \mid d \leq u \}$
 - (1) I.e. an open set $\downarrow [d, u] = \{[a, b] := d \le a \le b \le u\}$ for each pair of integers $d \le u$
 - (2) [d, u] consists of all points [a, b] with $d \le a \le b \le u$.
- 3. $Psh(\mathbb{IZ})$
 - a. Formal colimit completion of \mathbb{IZ}
 - b. Has finite limits, nno, exponential objects, subobject classifier
 - c. Epi-mono factorization, quotients by equivalence relations, disjoint coproducts
- 4. Z-action and quotient topos
 - a. For any $n \in \mathbb{Z}$ and open $[d, u] \in \mathbb{IZ}$, have [d + n, u + n]
 - b. For any $X \in \mathsf{Psh}(\mathbb{IZ})$, let $T(X)[d,u] \coloneqq \prod_{n \in \mathbb{Z}} X[d+n,u+n]$
 - c. T is a left-exact comonad. Denote topos of coalgebras by $Psh(\mathbb{IZ})_{\mathbb{Z}}$.
 - d. Let $Int_{\mathbb{Z}}$ denote localization of \mathbb{IZ} by \mathbb{Z} -action:

$$Ob(Int_{\mathbb{Z}}) = \{ [d, u] \mid d \le u \}$$

$$Int_{\mathbb{Z}}([d, u], [d', u']) = \{ n \in \mathbb{Z} \mid [d + n, u + n] \subseteq [d', u'] \}$$

- e. As always, $Int_{\mathbb{Z}}$ is equivalent to its skeleton
 - (1) Formally: Int_Z is twisted arrow category of \mathbb{N} , as a one-object cat
 - (2) Concretely:

$$Ob(Int_{\mathbb{Z}}) = \mathbb{N}$$

$$Int_{\mathbb{Z}}(\ell', \ell) = \{ n \in \mathbb{N} \mid n + \ell' \le \ell \}$$

- f. Theorem: $\mathsf{Psh}(\mathsf{Int}_{\mathbb{Z}}) \cong \mathsf{Psh}(\mathbb{IZ})_{\mathbb{Z}}$, call it $\mathcal{B}_{\mathbb{Z}}$
- B. Examples in $\mathcal{B}_{\mathbb{Z}} = \mathsf{Psh}(\mathbf{Int}_{\mathbb{Z}})$:
 - 1. Graphs (fully faithful)
 - 2. Representables $y\ell$ given by $y\ell(\ell') = Int_{\mathbb{Z}}(\ell',\ell) = \{n \in \mathbb{N} \mid n + \ell' \leq \ell\}$
 - 3. Simplicial sets (faithful, not full), induced by "obvious functor" Int $\rightarrow \Delta$
- C. The subobject classifier and Catalan numbers
 - 1. Calculate $\Omega(\ell)$ for $\ell = 0, 1$
 - 2. 2, 5, 14, 42, 132, ... Catalan numbers

3. Dyck paths as subobject classifier

$$P_0 := 0 1 2 3 4 5 6 7 8$$

- 4. the poset
 - a. order \leq is "domination;
 - b. meet \land is min, wedge \lor is max,
 - c. Heyting structure: $P \Rightarrow Q$ is supremum of R with $P \land R \leq Q$.
- 5. Example: $\neg P_0$.

$$\neg P_0 = 0 1 2 3 4 5 6 7 8$$

III. Topos-theoretic type theory

- A. My take on type theory
 - 1. Introduce some atomic types, function symbols, predicate symbols
 - 2. Topos-theoretic rules:
 - a. products, coproducts, function types, subtypes, quotient types
 - b. Natural numbers type \mathbb{N} , type of propositions Prop
 - c. Predicate symbols can be combined using \top , \wedge , \bot , \vee , \Rightarrow , \exists , \forall
 - 3. Add axioms
 - 4. Prove things from your axioms
- B. Topos semantics in a presheaf topos $\mathcal{E} = Psh(C)$
 - 1. Assignments
 - a. To each atomic type, assign an object in $\mathcal E$
 - b. To each atomic function symbol, assign a morphism in ${\mathcal E}$
 - c. To each atomic predicate symbol $P:X\to \operatorname{Prop}$, assign a subobject $\{X\mid P\}\subseteq X$ in $\mathcal E$
 - 2. Mitchell-Bénabou language
 - a. Want to check that each axiom holds; what do connectives and quantifiers mean?
 - b. Connectives given by definable maps $\Omega^k \to \Omega$ for various $k \in \mathbb{N}$
 - c. Quantification over *X* is given by definable maps $\Omega^X \to \Omega$.
 - 3. Kripke-Joyal semantics of predicate $P: X \to \text{Prop}$... in a presheaf topos!
 - a. Notation
 - (1) Take $c \in C$ in the site and a section $x \in X(C)$

- (2) Write $c \Vdash P(x)$ to mean that $yc \xrightarrow{x} X$ factors through $\{X \mid P\} \subseteq X$.
- b. Then it turns out that:
 - (1) $c \Vdash P(x) \land Q(x)$ iff $c \Vdash P(x)$ and $c \Vdash Q(x)$.
 - (2) $c \Vdash P(x) \lor Q(x)$ iff $c \Vdash P(x)$ or $c \Vdash Q(x)$.
 - (3) $c \Vdash P(x) \Rightarrow Q(x)$ iff the following holds for all $d \to c$ in C: if $d \Vdash P(x)$ then $d \Vdash Q(x)$.
 - (4) $c \Vdash \neg P(x)$ iff for each $d \to c$ in C, it is not the case that $d \Vdash P(x)$
 - (5) $c \Vdash \forall (y : Y). P(x, y)$ iff, for all $d \rightarrow c$ in C and all $y \in Y(d)$, we have $d \Vdash P(x, y)$.
 - (6) $c \Vdash \exists (y : Y). P(x, y)$ iff there exists $y \in Y(c)$ with $c \Vdash P(x, y)$.
- c. Warning: the above facts only hold for presheaf toposes.

IV. Temporal type theory

- A. A type theory with semantics in $\mathcal{B}_{\mathbb{Z}}$
 - 1. Atomic type Time, atomic predicate $\delta \colon \mathbb{Z} \times \mathsf{Time} \to \mathsf{Prop}$
 - 2. Some axioms:
 - a. $\forall (n : \mathbb{Z})(t : \text{Time}). \neg \neg \delta(n, t) \Rightarrow \delta(n, t).$
 - (1) Syntactic sugar: Write $n \le t$ for $\delta(n, t)$.
 - (2) Let $v: \mathbb{Z} \times \text{Time} \to \text{Prop be } v(n,t) := \neg \delta(n+1,t)$
 - (3) Write $t \le n$ for v(n, t)
 - (4) We have $t \le n$ iff $\neg (n + 1 \le t)$
 - b. $\forall (t : Time). \exists (n : \mathbb{Z}). n \leq t$
 - c. $\forall (t : Time). \exists (n : \mathbb{Z}). t \leq n$
 - d. $\forall (t : Time)(m, n : \mathbb{Z}). (m \le n) \land (n \le t) \Rightarrow (m \le t)$
 - e. $\forall (t_1, t_2 : Time). (\forall (n : \mathbb{Z}). (n \le t_1) \Leftrightarrow (n \le t_2)) \Rightarrow (t_1 = t_2)$
 - f. Torsor axioms:
 - (1) $\forall (t : Time)(n' : \mathbb{Z}). \exists (t' : Time). \forall (n : \mathbb{Z}). ((n + n' \le t') \Leftrightarrow (n \le t))$
 - (2) Given t, n', write (t + n'): Time for unique such t'
 - (3) $\forall (t, t' : Time). \exists (n' : \mathbb{Z}). \forall (t : Time). ((n + n' \le t') \Leftrightarrow (n \le t))$
 - (4) Given t, t', write (t' t) : \mathbb{Z} for unique such n'

B. The semantics

- 1. Atomic type Time is sent to the graph $\cdots \to \bullet^{-1} \to \bullet^0 \to \bullet^1 \to \bullet^2 \to \cdots$
- 2. Predicate $\delta \colon \mathbb{Z} \times \text{Time} \to \text{Prop has } \ell \vdash (n, [t_0, t_1, \dots, t_\ell]) \text{ iff } n \leq t_0.$

$$(4 \le [2,3,4,5,6]) := 2 3 4 5 6$$

$$\neg (4 \le [1, 2, 3, 4, 5, 6]) := 2 3 4 5 6$$

C. Useful modalities

1. A modality $j: \text{Prop} \rightarrow \text{Prop}$ is a function satisfying the following for all P,Q: Prop

a.
$$P \Rightarrow jP$$
,

b.
$$jjP \Rightarrow P$$
, and

c.
$$j(P \land Q) \Leftrightarrow (jP \land jQ)$$
.

2. \downarrow : Time $\rightarrow (\mathbb{Z} \times \mathbb{Z}) \rightarrow \text{Prop} \rightarrow \text{Prop}$

a. Write t # [d, u] to mean $(t \le d - 1) \lor (u + 1 \le t)$, "t is apart from [d, u]"

b. Define $\downarrow_{[d,u]}^t P := P \lor t \# [u,d].^2$

c. Example $\downarrow_{[3,7]}^t \perp = t \# [7,3] = (t \le 6) \lor (4 \le t)$, with $t = [2, \ldots, 9]$:

d. $\downarrow_{[d,u]} P$ wipes all information about P except what occurs on intervals containing [d, u].

3. $@: \text{Time} \to (\mathbb{Z} \times \mathbb{Z}) \to \text{Prop} \to \text{Prop}$

a. Define $@_{[d,u]}^t P := (P \Rightarrow t \# [u,d]) \Rightarrow t \# [u,d]$

b. $@_{[d,u]}^t P$ wipes all information about P except what occurs on the interval

4. ϵ : Prop \rightarrow Prop, "edgewise"

a. Defined by $\epsilon P := \forall (t : \mathtt{Time}). @_{[0,1]}^t P$

b. The subtopos defined by ϵ is the subtopos of graphs.

D. Finally, we have nice language

1. Example: given a graph G and a subgraph $B \subseteq G$ defined by $i_B : G \to Prop$

2. $\forall (t: \mathtt{Time})(g:G). @_{[-1,0]}^t i_B(g) \Rightarrow \downarrow_{[-1,0]}^t \exists (n:\mathbb{Z}). \ 0 \leq n \leq 5 \land @_{[n,n+2]}^t i_B(g).$

3. "Whenever q traverses a blue edge, it must traverse two more consecutive blue edges within five hops."

²Inverted order not a typo.