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I. Introduction

A. Goal: a higher-order logic for behavior

1. Continuous version (joint with P. Schultz, https://arxiv.org/abs/1710.16258)
a. ODEs, LTSs, delays
b. Combining disparate sorts of systems
c. A language for behavior contracts
2. Discrete version
a. Simpler, but still quite rich
b. Kinda like: A higher-order logic for graphs
c. One can reason about restrictions on paths (e.g. “Whenever g traverses
a blue edge, it must traverse two more consecutive blue edges within
five hops.”)
d. One can reason about "effects" of traversing longer paths, i.e. informa-
tion which can’t be reduced to what’s observable on the edges.

B. Formal language
1. Very useful for defining and proving properties about behavior.
2. Higher-order logic with topos semantics works well.
C. Plan:
1. Describe the topos externally
2. Explain the type theory

3. Return to the above statement re: graphs
II. Topos of discrete behavior types Bz

A. Two presheaf toposes
1. Geometric theory of discrete finite intervals
a. Foreachd,u € Zwithd < u, a proposition"d <t < u™

b. Axiom: + \/;,d <t < u.

144 is for down, u is for up”


https://arxiv.org/abs/1710.10258

c fd<d<u<uthend<t<urd <t<u
2. Its syntactic category: a topological space 1Z

a. Points of IZ are intervals [a, b] witha < b

b. Open subsets: {|[d,u] |d < u}

(1) Le. an open set [[d, u] = {[a,b] :=d < a < b < u} for each pair of
integers d < u

(2) [d, u] consists of all points [a, b] withd <a < b < u.
3. Psh(IZ)
a. Formal colimit completion of IZ
b. Has finite limits, nno, exponential objects, subobject classifier

c. Epi-mono factorization, quotients by equivalence relations, disjoint co-

products
4. Z-action and quotient topos
a. Forany n € Z and open [d, u] € IZ, have [d + n, u + n]
b. For any X € Psh(IZ), let T(X)[d, u] := [1,ez X[d + n, u + n]

c. T is a left-exact comonad. Denote topos of coalgebras by Psh(IZ)z.

Q.

. Let Intz denote localization of IZ by Z-action:

Ob(Intz) = {[d, u] | d < u}
Intz([d,u],|d",u'))={neZ||d+n,u+n]C[d, u']}

e. As always, Intz is equivalent to its skeleton
(1) Formally: Intz is twisted arrow category of N, as a one-object cat

(2) Concretely:

Ob(Intz) = N
Intz(¢/,0)={neN|n+{ <}

f. Theorem: Psh(Intz) = Psh(IZ)z, call it Bz
B. Examples in Bz = Psh(Intz):
1. Graphs (fully faithful)
2. Representables y¢ given by y£(¢’) = Intz({', () = {n e N |n+ ' < {}
3. Simplicial sets (faithful, not full), induced by “obvious functor” Int — A

C. The subobject classifier and Catalan numbers

1. Calculate Q(¢) for £ =0, 1
2. 2,5,14,42,132, ... Catalan numbers
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3. Dyck paths as subobject classifier

Py = 0/1 2V3 4 5 6\7~8

a. order < is “domination;

4. the poset

b. meet A is min, wedge V is max,

c. Heyting structure: P = Q is supremum of R with P AR < Q.

=Py = 0NIA2A3 4 5N6/7 8

III. Topos-theoretic type theory

5. Example: —Py.

A. My take on type theory

1. Introduce some atomic types, function symbols, predicate symbols
2. Topos-theoretic rules:
a. products, coproducts, function types, subtypes, quotient types
b. Natural numbers type N, type of propositions Prop
c. Predicate symbols can be combined using T, A, L,V,=,3,V
3. Add axioms

4. Prove things from your axioms
B. Topos semantics in a presheaf topos & = Psh(C)

1. Assignments
a. To each atomic type, assign an object in &
b. To each atomic function symbol, assign a morphism in &
c. To each atomic predicate symbol P : X — Prop, assign a subobject
{X|P}c Xin&
2. Mitchell-Bénabou language

a. Want to check that each axiom holds; what do connectives and quanti-
fiers mean?

b. Connectives given by definable maps QF — Q for various k € N
c. Quantification over X is given by definable maps QX — Q.

3. Kripke-Joyal semantics of predicate P : X — Prop ... in a presheaf topos!
a. Notation

(1) Take c € C in the site and a section x € X(C)
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(2) Write ¢ I P(x) to mean that yc 5 X factors through {X | P} € X.
b. Then it turns out that:
(1) ¢+ P(x)AQ(x)iff c + P(x) and ¢ I+ Q(x).
(2) ¢k P(x) V Q(x)iff c I P(x) or ¢ I Q(x).
(3) ¢ - P(x) = Q(x) iff the following holds foralld — c in C: if d I P(x)
then d + Q(x).
(4) ¢ Ik =P(x) iff for each d — c in C, it is not the case that d + P(x)

) c-VY(y:Y).P(x,y)iff, foralld — cin C and all y € Y(d), we have
dIF P(x,y).

(6) c-3(y : Y). P(x, y) iff there exists y € Y(c) with ¢ I P(x, y).

c. Warning: the above facts only hold for presheaf toposes.
IV. Temporal type theory

A. A type theory with semantics in 87

1. Atomic type Time, atomic predicate 6: Z X Time — Prop
2. Some axioms:
a. Y(n: Z)(t: Time). ~—6(n, t) = 6(n, ).
(1) Syntactic sugar: Write n < t for 6(n, t).
(2) Letv: Z X Time — Prop be v(n,t) = =6(n +1,t)
(3) Write t < n for v(n, t)
(4) Wehavet <niff -(n+1<t)
V(t:Time).A(n:Z).n <t
V(t:Time).d(n : Z).t <n
V(t:Time)(m,n :Z).(m <n)A(n <t)=(m<t)
Y(t1,t : Time). (Y(n: Z).(n < 1) © (n < 1)) = (t1 = t2)
f. Torsor axioms:
(1) V(t: Time)(n’ : Z). 3(t' : Time).V(n : Z). (n+n’ < t') & (n < t))
(2) Given t,n’, write (f + n’) : Time for unique such #’
(3) V(t,t' : Time). 3(n’ : Z). ¥(t : Time). (n +n’ < t') & (n < t))

(4) Given t,t’, write (t' — t) : Z for unique such n’

<

& n

©

B. The semantics

1 0 1 2

1. Atomic type Time is sent to the graph -+ — 7% — " — ' — e° — ...

2. Predicate 6: Z X Time — Prop has € + (n, [to, t1,..., t¢]) iff n < tg.

(4<[2,3,4,5,6]) = 2,3/4 5 6



-4 <[1,2,3,4,5,6]) = 2 3\4A516

1. A modality j: Prop — Prop is a function satisfying the following for all
P,Q : Prop

C. Useful modalities

a. P = jP,
b. jjP = P, and
e i(PAQ) & (P A Q).
2. |: Time — (Z X Z) — Prop — Prop
a. Write t#[d, u] tomean (t <d —-1) vV (u+1<t),“tisapart from [d, u]”
b. Define lfd,u]P =PV t#|u,d]>
c. Example lf3,7]J‘ =t#[7,3]=(t<6)v(4<t),witht=][2,...,9]:

(L) = 23 456789

d. l(4,, P wipes all information about P except what occurs on intervals
containing [d, u].
3. @: Time — (Z X Z) — Prop — Prop
a. Define @’Ed,u]P =[P = t#[u,d]) = t#[u,d]
b. @’E d,u]P wipes all information about P except what occurs on the interval
[d, u].
4. €: Prop — Prop, “edgewise”
a. Defined by €P := V(¢ : Time). @fo,l]P
b. The subtopos defined by e is the subtopos of graphs.

D. Finally, we have nice language

1. Example: given a graph G and a subgraph B C G defined by ig: G — Prop
2. V(¢ : Time)(g : G). @[_, ip(g) = l103(n:2).0<n <57@ i5(g).

[n,n+2]
3. “Whenever g traverses a blue edge, it must traverse two more consecutive
blue edges within five hops.”

2Inverted order not a typo.



