Backprop as Functor

Brendan Fong, with David Spivak, Rémy Tuyéras, Mike Johnson

2nd Workshop on Open Games
Oxford
5 July 2018

Consider the function:

Cat?: Pictures = R'9”1003 __, (cat not_cat) = R?

'L
“' — 1.00|cat) + 0.00lnot_cat)

e

. Bl — 0.12|cat) + 0.95|not_cat)

i — 1.00|cat) + 1.00lnot_cat)

How do we program it?

Outline

I. Supervised Learning, Compositionally

II. Specifying Parametrised Functions
III. Backprop: Updates and Requests via Gradient Descent
IV. Learners, Lenses, and Open Games

[. Supervised Learning,
Compositionally

Goal: learn a function from examples
Fix sets A, B. For all f: A - B, use pairs (a, f(a)) to approximate f.

Method: use the following data

Hypothesis set: P

Implementation function: I: Px A - B
Update function U:Px Ax B - P
Request function m Px Ax B -~ A

a I,(-) b

Alearner A — Bisatuple” (P, I,U,r).

*actually an equivalence class.

Goal: learn a function from examples
Fix sets A, B. For all f: A - B, use pairs (a, f(a)) to approximate f.

Method: use the following data

Hypothesis set: P « Strategies

Implementation function: I: P x A - B « Play
Update function U: P x A x B - P « Equilibrium
Request function r: P x A x B - A « Coutility

a I,(-) b

Alearner A — B is a tuple* (P,I,U,r).

*actually an equivalence class.

Goal: learn a function from examples
Fix sets A, B. For all f: A - B, use pairs (a, f(a)) to approximate f.

Method: use the following data

Hypothesis set: P

Implementation function: I: Px A - B
Update function U:Px Ax B - P
Request function m Px Ax B -~ A

a I,(-) b

Alearner A — Bisatuple” (P, I,U,r).

*actually an equivalence class.

The symmetric monoidal category Learn has
objects: sets
morphisms: learners (P, I,U,r).

How does composition work? Suppose we have a pair of learners:

U, r ,J,V,s
(P,LU,r) B (Q)

A C.

How does composition work? Suppose we have a pair of learners:

A (P,I,U,T) B (Q,J,V,s) C

The new parameter space is just the product Q x P.

How does composition work? Suppose we have a pair of learners:

A (P,I,U,T) B (Q,J,V,s) C

Let’s represent our learners with string diagrams:

=
~
o

I:PxA—B
P P
A U,r
B A

(U,r):PxAxB—PxA

How does composition work? Suppose we have a pair of learners:

A (P,I,U,T) B (Q,J,V,s) C

Composing implementation functions is straightforward:

(¢,p,a) — J(q,1(p,a))

How does composition work? Suppose we have a pair of learners:

A (P,I,U,T) B (Q,J,V,s) C

Composing update/request functions is more complicated:

(a,p,a,c) — (V(q,f(p,a)m)U(p,a,8(q71(p,a)76))77“(p,a,S(q,I(p,a),C)))-

Key idea: composition creates local training data.

Q

bl

a I(p,-) J(¢,-) ¢
implement
: T :
request
—
a s(@.1(pa).0) 1(p.a) e
update%(a,s(q,](p,a),c)) update (I(p,a),c)
10, -) J(d',-)

The monoidal product of (P,I,U,r):A— B and (Q,J,V,s):C —» D is
given by

Q = O v

P— | .
Q U’T
A
C

A
B Vs

C
D— |

A compositional framework for supervised learning:
Learning: parameter updates.
Supervised: training is by (input, output) pairs.
Compositional: we can build new learners from old.

A compositional framework for supervised learning:
Learning: parameter updates.
Supervised: training is by (input, output) pairs.
Compositional: we can build new learners from old.

But how can we explicitly construct a learner?

II. Specifying Parametrised
Functions

The prop Para has
objects: natural numbers
morphisms m — n: differentiable functions

I:R* x R™ - R".

Composition is as for implementation functions in Learn:

RZ

Rk
R™

Neural networks (sequences of bipartite graphs) are a compositional,
combinatorial language for specifying differentiable parametrised
functions.

I: (R® x R?*) x R? — R;
(p,q,a) — U(Q1U(P11a1 +P12az + p1p) + g0 (p21a1 + pap) + qb)-

where o:R — R is a differentiable function known as the activation.

The prop NNet has
objects: natural numbers.

morphisms m — n: neural networks with m inputs and n
outputs.

composition: concatenation of neural networks.

Theorem
A differentiable function o: R — R defines a prop functor

I,:NNet — Para.

Differentiable parametrised functions can also be constructed using
string diagrams in Para.

The image of NNet under I, is contained in the composite of:

m

> p(ar,as) = a1 + as

m—<_" 5(a) = (a,a)
(R%0) o(z) =o(x)
(B, B) f—— B(w) = w

Differentiable parametrised functions can also be constructed using
string diagrams in Para.

Weight-tying is a technique that identifies parameters that describe the
same structure.

We factorise.

m—— (R, 1) |——n=

Then copy.

(R%,1)

(Rkv 1R"‘)
(R%, J)

III. Backprop: Updates and
Requests via Gradient
Descent

Theorem
Fix € > 0, e:R xR — R such that %(azo,—):R — R has inverse
hy, for each xg.

There is a faithful, injective-on-objects, strong symmetric
monoidal functor
L :Para — Learn

sending each object m to R™, and each morphism (R*, I):m —
n to the learner (R¥, I,U;,7):R™ — R" defined by

Ur(p,a,b) =p-eV,Er(p,a,b)

ri(p,a,b) = ha(VaEI(p,a, b))7

Here E;(p,a,b) =Y, e(I(p,a);,b;) and h, denotes component-wise
application of Ay, .

Let e be the quadratic error quad(x,y) = %(x -y)2.

Corollary
For every e > 0, there is a strong symmetric monoidal functor

L quad: Para — Learn

sending (R¥,I):m — n to the learner (R*,I,U;,r;):R™ —» R"
defined by

Ur(p,a,b)x = pr — € (I (p,a) = b;) 52
J

ri(p.a,b); = a; - Y (I;(p,a) - b;) 5.

J

cost function
. weights and biases i i
neural architecture R
é (ﬁﬂ update parameters

weight-tying
g I, . Lee »(//

NNet » Para > Learn
o cqnvolutlonal training data
activation function gradient descent

backpropagation

IV. Learners, Lenses, and
Open Games

An asymmetric lens (p, g): A - B is a learner with trivial state space.

Learner A - B ‘ Asymmetric lens A - B
Hypotheses P —
Implementation I: P x A - B Putp:A—- B
Update U:Px Ax B - P —
Request P x Ax B —» A Getg:AxB—- A
Theorem

There is a faithful, identity-on-objects symmetric monoidal
functor from Learn to the category of spans of asymmetric lenses

mapping
(P,1,U,r):A—> B

to

PxA (I,(U,r)) B.

(72,(71,73))

A

Learner A —» B | Open game (X,S5) > (Y,R)

Hypotheses P Strategy profiles X
Implementation I: P x A - B Play P: X x¥ > Y
Update U:Px AxB— P Equilibrium E: X x (Y - R) - PXY
Request m Px Ax B — A Coutility C: X x ¥ x R > S

Summary

I. Supervised Learning, Compositionally

II. Specifying Parametrised Functions
[II. Backprop: Updates and Requests via Gradient Descent
IV. Learners, Lenses, and Open Games

For more:

https://arxiv.org/abs/1711.10455
http://www.brendanfong.com/

https://arxiv.org/abs/1711.10455
http://www.brendanfong.com/

	Introduction
	Supervised Learning
	Parametrised functions
	Backprop
	Links with lenses and open games
	Conclusion

