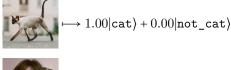
Backprop as Functor

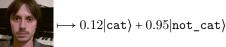
Brendan Fong, with David Spivak, Rémy Tuyéras, Mike Johnson

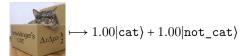
2nd Workshop on Open Games Oxford 5 July 2018

Consider the function:

Cat?: Pictures =
$$\mathbb{R}^{100 \times 100 \times 3} \longrightarrow \langle \mathtt{cat}, \mathtt{not_cat} \rangle = \mathbb{R}^2$$







How do we program it?

Outline

- I. Supervised Learning, Compositionally
- II. Specifying Parametrised Functions
- III. Backprop: Updates and Requests via Gradient Descent
- IV. Learners, Lenses, and Open Games

I. Supervised Learning,

Compositionally

Goal: learn a function from examples

Fix sets A, B. For all $f: A \to B$, use pairs (a, f(a)) to approximate f.

Method: use the following data

Hypothesis set: P

Implementation function: $I: P \times A \rightarrow B$

Update function $U: P \times A \times B \rightarrow P$

Request function $r: P \times A \times B \rightarrow A$

$$a - I_p(-)$$

A learner $A \to B$ is a tuple* (P, I, U, r).

^{*}actually an equivalence class.

Goal: learn a function from examples

Fix sets A, B. For all $f: A \to B$, use pairs (a, f(a)) to approximate f.

Method: use the following data

Hypothesis set: $P \leftarrow$ Strategies

Implementation function: $I: P \times A \rightarrow B \Leftrightarrow Play$

Update function $U: P \times A \times B \rightarrow P \leftarrow$ Equilibrium

Request function $r: P \times A \times B \rightarrow A \leftarrow$ Coutility

$$a - I_p(-)$$
 b

A learner $A \rightarrow B$ is a tuple* (P, I, U, r).

^{*}actually an equivalence class.

Goal: learn a function from examples

Fix sets A, B. For all $f: A \to B$, use pairs (a, f(a)) to approximate f.

Method: use the following data

Hypothesis set: P

Implementation function: $I: P \times A \rightarrow B$

Update function $U: P \times A \times B \rightarrow P$

Request function $r: P \times A \times B \rightarrow A$

$$a - I_p(-)$$

A learner $A \to B$ is a tuple* (P, I, U, r).

^{*}actually an equivalence class.

The symmetric monoidal category Learn has **objects**: sets

 $\mathbf{morphisms} \text{: learners } (P, I, U, r).$

 $A \xrightarrow{(P,I,U,r)} B \xrightarrow{(Q,J,V,s)} C.$

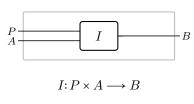
11

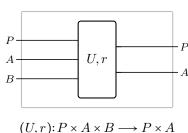
$$A \xrightarrow{(P,I,U,r)} B \xrightarrow{(Q,J,V,s)} C.$$

The new parameter space is just the product $Q \times P$.

$$A \xrightarrow{(P,I,U,r)} B \xrightarrow{(Q,J,V,s)} C.$$

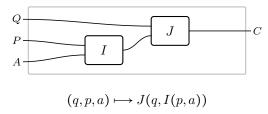
Let's represent our learners with string diagrams:





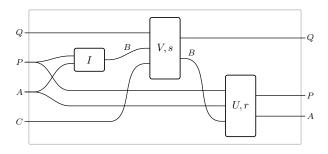
$$A \xrightarrow{(P,I,U,r)} B \xrightarrow{(Q,J,V,s)} C.$$

Composing implementation functions is straightforward:



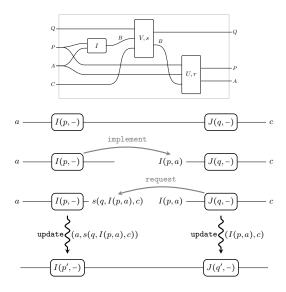
$$A \xrightarrow{(P,I,U,r)} B \xrightarrow{(Q,J,V,s)} C.$$

Composing update/request functions is more complicated:

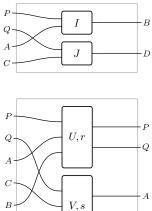


$$(q, p, a, c) \longmapsto \Big(V(q, I(p, a), c), U(p, a, s(q, I(p, a), c)), r(p, a, s(q, I(p, a), c))\Big).$$

Key idea: composition creates local training data.



The **monoidal product** of (P, I, U, r): $A \rightarrow B$ and (Q, J, V, s): $C \rightarrow D$ is given by



B

A compositional framework for supervised learning:

Learning: parameter updates.

Supervised: training is by (input, output) pairs.

Compositional: we can build new learners from old.

A compositional framework for supervised learning:

Learning: parameter updates.

Supervised: training is by (input, output) pairs.

Compositional: we can build new learners from old.

But how can we explicitly construct a learner?

II. Specifying Parametrised

Functions

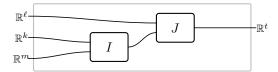
The prop Para has

objects: natural numbers

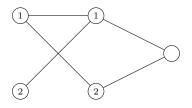
morphisms $m \rightarrow n$: differentiable functions

 $I:\mathbb{R}^k\times\mathbb{R}^m\to\mathbb{R}^n.$

Composition is as for implementation functions in Learn:



Neural networks (sequences of bipartite graphs) are a compositional, combinatorial language for specifying differentiable parametrised functions.



$$I: (\mathbb{R}^5 \times \mathbb{R}^3) \times \mathbb{R}^2 \longrightarrow \mathbb{R};$$
$$(p, q, a) \longmapsto \sigma(q_1 \sigma(p_{11} a_1 + p_{12} a_2 + p_{1b}) + q_2 \sigma(p_{21} a_1 + p_{2b}) + q_b).$$

where $\sigma: \mathbb{R} \to \mathbb{R}$ is a differentiable function known as the activation.

The prop NNet has

objects: natural numbers.

 $\mathbf{morphisms}\ m \to n\text{:}$ neural networks with m inputs and n outputs.

composition: concatenation of neural networks.

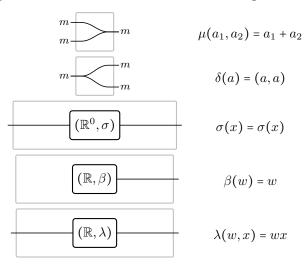
Theorem

A differentiable function $\sigma: \mathbb{R} \to \mathbb{R}$ defines a prop functor

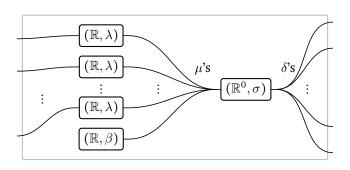
 I_{σ} : NNet \longrightarrow Para.

 $\label{lem:differentiable} \textit{Differentiable parametrised functions can also be constructed using string diagrams in Para.}$

The image of NNet under I_{σ} is contained in the composite of:

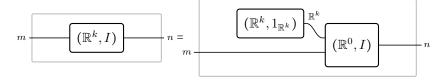


Differentiable parametrised functions can also be constructed using string diagrams in Para.

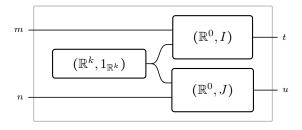


Weight-tying is a technique that identifies parameters that describe the same structure.

We factorise.



Then copy.



III. Backprop: Updates and

Requests via Gradient

Descent

Theorem

Fix $\epsilon > 0$, $e: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ such that $\frac{\partial e}{\partial x}(x_0, -): \mathbb{R} \to \mathbb{R}$ has inverse h_{x_0} for each x_0 .

There is a faithful, injective-on-objects, strong symmetric monoidal functor

$$L_{\epsilon,e}$$
: Para \longrightarrow Learn

sending each object m to \mathbb{R}^m , and each morphism $(\mathbb{R}^k, I): m \to n$ to the learner $(\mathbb{R}^k, I, U_I, r_I): \mathbb{R}^m \to \mathbb{R}^n$ defined by

$$U_I(p, a, b) = p - \varepsilon \nabla_p E_I(p, a, b)$$

$$r_I(p,a,b) = h_a(\nabla_a E_I(p,a,b)),$$

Here $E_I(p,a,b) = \sum_i e(I(p,a)_i,b_i)$ and h_a denotes component-wise application of h_{a_i} .

Let e be the quadratic error quad $(x,y) = \frac{1}{2}(x-y)^2$.

Corollary

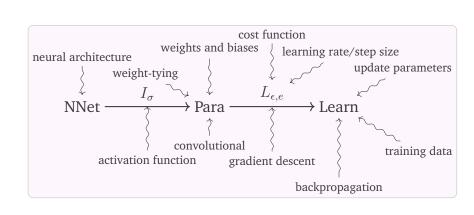
For every $\epsilon > 0$, there is a strong symmetric monoidal functor

$$L_{\epsilon \text{ quad}}$$
: Para \longrightarrow Learn

sending $(\mathbb{R}^k, I): m \to n$ to the learner $(\mathbb{R}^k, I, U_I, r_I): \mathbb{R}^m \to \mathbb{R}^n$ defined by

$$U_{I}(p,a,b)_{k} = p_{k} - \epsilon \sum_{j} (I_{j}(p,a) - b_{j}) \frac{\partial I_{j}}{\partial p_{k}}$$
$$r_{I}(p,a,b)_{i} = a_{i} - \sum_{i} (I_{j}(p,a) - b_{j}) \frac{\partial I_{j}}{\partial a_{i}}.$$

$$r_I(p, a, b)_i = a_i - \sum_i (I_j(p, a) - b_j) \frac{\partial I_j}{\partial a_i}.$$



IV. Learners, Lenses, and

Open Games

An **asymmetric lens** (p,g): $A \rightarrow B$ is a learner with trivial state space.

Learner $A \rightarrow B$	Asymmetric lens $A \rightarrow B$
Hypotheses P	_
Implementation $I: P \times A \rightarrow B$	Put $p: A \to B$
Update $U: P \times A \times B \rightarrow P$	
Request $r: P \times A \times B \rightarrow A$	Get $g: A \times B \to A$

Theorem

There is a faithful, identity-on-objects symmetric monoidal functor from Learn to the category of *spans of asymmetric lenses* mapping

$$(P, I, U, r): A \rightarrow B$$

to

$$A \stackrel{(\pi_2,(\pi_1,\pi_3))}{\longleftrightarrow} P \times A \stackrel{(I,(U,r))}{\longleftrightarrow} B.$$

Learner $A \rightarrow B$	Open game $(X,S) \rightarrow (Y,R)$
Hypotheses P	Strategy profiles Σ
Implementation $I: P \times A \rightarrow B$	Play $P: X \times \Sigma \to Y$
Update $U: P \times A \times B \rightarrow P$	Equilibrium $E: X \times (Y \to R) \to \mathcal{P}\Sigma$
Request $r: P \times A \times B \rightarrow A$	Coutility $C: X \times \Sigma \times R \to S$

Summary

- I. Supervised Learning, Compositionally
- II. Specifying Parametrised Functions
- III. Backprop: Updates and Requests via Gradient Descent
- IV. Learners, Lenses, and Open Games

For more:

https://arxiv.org/abs/1711.10455 http://www.brendanfong.com/