
Backprop as Functor
Brendan Fong, with David Spivak, Rémy Tuyéras, Mike Johnson

2nd Workshop on Open Games
Oxford
5 July 2018



Consider the function:

Cat?∶ Pictures = R100×100×3 Ð→ ⟨cat,not_cat⟩ = R2

z→ 1.00∣cat⟩ + 0.00∣not_cat⟩

z→ 0.12∣cat⟩ + 0.95∣not_cat⟩

z→ 1.00∣cat⟩ + 1.00∣not_cat⟩

How do we program it?



Outline
I. Supervised Learning, Compositionally

II. Specifying Parametrised Functions

III. Backprop: Updates and Requests via Gradient Descent

IV. Learners, Lenses, and Open Games



I. Supervised Learning,
Compositionally



Goal: learn a function from examples
Fix sets A, B. For all f ∶A→ B, use pairs (a, f(a)) to approximate f .

Method: use the following data

Hypothesis set: P

↝Strategies

Implementation function: I ∶P ×A→ B

↝Play

Update function U ∶P ×A ×B → P

↝Equilibrium

Request function r∶P ×A ×B → A

↝Coutility

Ip(−)a b

A learner A→ B is a tuple* (P, I,U, r).

*actually an equivalence class.



Goal: learn a function from examples
Fix sets A, B. For all f ∶A→ B, use pairs (a, f(a)) to approximate f .

Method: use the following data

Hypothesis set: P ↝Strategies

Implementation function: I ∶P ×A→ B ↝Play

Update function U ∶P ×A ×B → P ↝Equilibrium

Request function r∶P ×A ×B → A ↝Coutility

Ip(−)a b

A learner A→ B is a tuple* (P, I,U, r).

*actually an equivalence class.



Goal: learn a function from examples
Fix sets A, B. For all f ∶A→ B, use pairs (a, f(a)) to approximate f .

Method: use the following data

Hypothesis set: P

↝Strategies

Implementation function: I ∶P ×A→ B

↝Play

Update function U ∶P ×A ×B → P

↝Equilibrium

Request function r∶P ×A ×B → A

↝Coutility

Ip(−)a b

A learner A→ B is a tuple* (P, I,U, r).

*actually an equivalence class.



The symmetric monoidal category Learn has

objects: sets

morphisms: learners (P, I,U, r).



How does composition work? Suppose we have a pair of learners:

A
(P,I,U,r)
ÐÐÐÐÐ→ B

(Q,J,V,s)
ÐÐÐÐÐ→ C.



How does composition work? Suppose we have a pair of learners:

A
(P,I,U,r)
ÐÐÐÐÐ→ B

(Q,J,V,s)
ÐÐÐÐÐ→ C.

The new parameter space is just the product Q × P .



How does composition work? Suppose we have a pair of learners:

A
(P,I,U,r)
ÐÐÐÐÐ→ B

(Q,J,V,s)
ÐÐÐÐÐ→ C.

Let’s represent our learners with string diagrams:

IP
A B

I ∶P ×AÐ→ B

U, r

P

A

B

P

A

(U, r)∶P ×A ×B Ð→ P ×A



How does composition work? Suppose we have a pair of learners:

A
(P,I,U,r)
ÐÐÐÐÐ→ B

(Q,J,V,s)
ÐÐÐÐÐ→ C.

Composing implementation functions is straightforward:

I

J
Q

P

A

C

(q, p, a)z→ J(q, I(p, a))



How does composition work? Suppose we have a pair of learners:

A
(P,I,U,r)
ÐÐÐÐÐ→ B

(Q,J,V,s)
ÐÐÐÐÐ→ C.

Composing update/request functions is more complicated:

I
V, s

U, r

Q

P

A

C

Q

P

A

B
B

(q, p, a, c)z→ (V (q, I(p, a), c), U(p, a, s(q, I(p, a), c)), r(p, a, s(q, I(p, a), c))).



Key idea: composition creates local training data.

I
V, s

U, r

Q

P

A

C

Q

P

A

B
B

I(p,−)a J(q,−) c

I(p,−)a J(q,−) cI(p, a)

implement

I(p,−)a s(q, I(p, a), c) J(q,−) cI(p, a)

request

I(p′,−) J(q′,−)

update (a, s(q, I(p, a), c)) update (I(p, a), c)



The monoidal product of (P, I,U, r)∶A→ B and (Q,J,V, s)∶C →D is
given by

I

J

P

Q

A

C

B

D

U, r

V, s

P

Q

A

C

B

D

P

Q

A

C



A compositional framework for supervised learning:

Learning: parameter updates.

Supervised: training is by (input, output) pairs.

Compositional: we can build new learners from old.

But how can we explicitly construct a learner?



A compositional framework for supervised learning:

Learning: parameter updates.

Supervised: training is by (input, output) pairs.

Compositional: we can build new learners from old.

But how can we explicitly construct a learner?



II. Specifying Parametrised
Functions



The prop Para has

objects: natural numbers

morphisms m→ n: differentiable functions

I ∶Rk ×Rm → Rn.

Composition is as for implementation functions in Learn:

I

J
R`

Rk

Rm

Rt



Neural networks (sequences of bipartite graphs) are a compositional,
combinatorial language for specifying differentiable parametrised
functions.

2

1

2

1

I ∶ (R5 ×R3) ×R2 Ð→ R;
(p, q, a)z→ σ(q1σ(p11a1 + p12a2 + p1b) + q2σ(p21a1 + p2b) + qb).

where σ∶R→ R is a differentiable function known as the activation.



The prop NNet has

objects: natural numbers.

morphisms m → n: neural networks with m inputs and n
outputs.

composition: concatenation of neural networks.

Theorem
A differentiable function σ∶R→ R defines a prop functor

Iσ ∶NNetÐ→ Para.



Differentiable parametrised functions can also be constructed using
string diagrams in Para.

The image of NNet under Iσ is contained in the composite of:

m

m
m µ(a1, a2) = a1 + a2

m
m

m
δ(a) = (a, a)

(R0, σ) σ(x) = σ(x)

(R, β) β(w) = w

(R, λ) λ(w,x) = wx



Differentiable parametrised functions can also be constructed using
string diagrams in Para.

(R, λ)

(R, λ)

(R, λ)
⋮

(R, β)

(R0, σ)
⋮

⋮
µ’s δ’s

⋮



Weight-tying is a technique that identifies parameters that describe the
same structure.

We factorise.

(R0, I)
(Rk,1Rk)

m

Rk

n
(Rk, I)m n =

Then copy.

(R0, I)

(R0, J)

(Rk,1Rk)

m

n

t

u



III. Backprop: Updates and
Requests via Gradient
Descent



Theorem
Fix ε > 0, e∶R × R → R such that ∂e

∂x
(x0,−)∶R → R has inverse

hx0 for each x0.

There is a faithful, injective-on-objects, strong symmetric
monoidal functor

Lε,e∶ParaÐ→ Learn

sending each object m to Rm, and each morphism (Rk, I)∶m →
n to the learner (Rk, I,UI , rI)∶Rm → Rn defined by

UI(p, a, b) = p − ε∇pEI(p, a, b)

rI(p, a, b) = ha(∇aEI(p, a, b)),

Here EI(p, a, b) = ∑i e(I(p, a)i, bi) and ha denotes component-wise
application of hai .



Let e be the quadratic error quad(x, y) = 1
2(x − y)

2.

Corollary
For every ε > 0, there is a strong symmetric monoidal functor

Lε,quad∶ParaÐ→ Learn

sending (Rk, I)∶m → n to the learner (Rk, I,UI , rI)∶Rm → Rn
defined by

UI(p, a, b)k = pk − ε∑
j

(Ij(p, a) − bj) ∂Ij

∂pk

rI(p, a, b)i = ai −∑
j

(Ij(p, a) − bj) ∂Ij

∂ai
.



NNet

neural architecture

Para

weights and biases

weight-tying

convolutional

Learn

update parameters

backpropagation

training data

Iσ

activation function

Lε,e

learning rate/step size
cost function

gradient descent



IV. Learners, Lenses, and
Open Games



An asymmetric lens (p, g)∶A→ B is a learner with trivial state space.

Learner A→ B Asymmetric lens A→ B
Hypotheses P —

Implementation I ∶P ×A→ B Put p∶A→ B
Update U ∶P ×A ×B → P —
Request r∶P ×A ×B → A Get g∶A ×B → A

Theorem
There is a faithful, identity-on-objects symmetric monoidal
functor from Learn to the category of spans of asymmetric lenses
mapping

(P, I,U, r)∶A→ B

to
A
(π2,(π1,π3))←ÐÐÐÐÐÐÐ P ×A

(I,(U,r))
ÐÐÐÐÐ→ B.



Learner A→ B Open game (X,S)→ (Y,R)
Hypotheses P Strategy profiles Σ

Implementation I ∶P ×A→ B Play P ∶X ×Σ→ Y
Update U ∶P ×A ×B → P Equilibrium E∶X × (Y → R)→ PΣ
Request r∶P ×A ×B → A Coutility C ∶X ×Σ ×R → S



Summary
I. Supervised Learning, Compositionally

II. Specifying Parametrised Functions

III. Backprop: Updates and Requests via Gradient Descent

IV. Learners, Lenses, and Open Games



For more:
https://arxiv.org/abs/1711.10455

http://www.brendanfong.com/

https://arxiv.org/abs/1711.10455
http://www.brendanfong.com/

	Introduction
	Supervised Learning
	Parametrised functions
	Backprop
	Links with lenses and open games
	Conclusion

